Measurement of Apparent Diffusion Coefficients within Ultra-thin Nafion Langmuir-Schaefer Films: Comparison of a Novel Scanning Electrochemical Microscopy Approach with Cyclic Voltammetry

Paolo Bertoncello, Ilenia Ciani, Fei Li and Patrick R. Unwin*

Contribution from Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom

Supporting Information

S1. Pressure-area isotherm of Nafion on a 0.1 M NaCl subphase; barrier speed: 100 cm² min⁻¹.
S2. CVs of a 20-layer Nafion LS film during loading in 10^{-3} M FA$^+$ (0.1 M NaCl supporting electrolyte). The scan rate was 0.05 V s$^{-1}$; 100 cycles.
S3. CVs of a 20-layer Nafion LS film during loading in 10^{-3} M Ru(bpy)_3^{2+} (0.1 M NaCl supporting electrolyte). The scan rate was 0.05 V s$^{-1}$; 100 cycles.
The concentrations of the electroactive species inside the Nafion films were calculated based on the relation [1]:

\[i = (9.39 \times 10^5) v V C_0^* \]

where \(v \) is the scan rate (V s\(^{-1}\)), \(V \) is the volume of the film (cm\(^3\)) and \(C_0^* \) the concentration of FA\(^+\) within Nafion film. The number of the moles incorporated in the film, \(m \), is given by the product of the volume of the film and the concentration of the electroactive species inside the film:

\[m = V C_0^* \]

For reversible redox couples like FA\(^+\) incorporated inside Nafion LS films, the slope of the anodic current \(I_{pa} \) vs \(v^{1/2} \) plot in the diffusion controlled region obeys the Randles-Sevcik equation [1]. When linear, the slope of these plots, \(S \), combined with the films thickness, \(\Phi \) (estimated by AFM), and amount of electroactive species (obtained by coulometric integration of the anodic peak current under thin-layer conditions) allows the evaluation of the apparent diffusion coefficient values within the coating based on the equation [2]:

\[
D_{app} = \left(\frac{S \cdot \Phi}{(2.69 \times 10^3) \cdot m}\right)^2
\]
S5. Steady-state cyclic voltammogram measured at a 25 µm diameter UME in a solution containing 10^{-3} M FA^+ and 0.1 M NaCl as supporting electrolyte; scan rate of 0.5 mV s^{-1}.

The diffusion coefficient was calculated from the limiting current of a steady-state voltammogram for FA^+ oxidation (for example, see S5). Measurements were repeated with 5 freshly-prepared solutions of 10^{-3} M FA^+, supporting electrolyte 0.1 M NaCl. The measured diffusion coefficient for FA^+ was 6.1 (± 0.1) x 10^{-6} cm^2 s^{-1}.