Supporting Information

Title: Palladium Catalyzed Coupling of Allenylphosphonates, Phenylallenes and 1,2-Dialkadienoate Esters: Remarkable Salt Effect and Routes to Novel Benzofurans and Isocoumarins

Authors: Manab Chakravarty and K. C. Kumara Swamy*

<table>
<thead>
<tr>
<th></th>
<th>General experimental conditions and Crystal data</th>
<th>S2-S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Figure S1. PLATON diagram for 8</td>
<td>S5</td>
</tr>
<tr>
<td>3</td>
<td>Figure S2. PLATON diagram for 12</td>
<td>S5</td>
</tr>
<tr>
<td>4</td>
<td>Figure S3. PLATON diagram for 16</td>
<td>S5</td>
</tr>
<tr>
<td>5</td>
<td>Figure S4. PLATON diagram for 17</td>
<td>S6</td>
</tr>
<tr>
<td>6</td>
<td>Figure S5. PLATON diagram for 21</td>
<td>S6</td>
</tr>
<tr>
<td>7</td>
<td>Figure S6. PLATON diagram for 23</td>
<td>S6</td>
</tr>
<tr>
<td>8</td>
<td>Figure S7. PLATON diagram for 24</td>
<td>S7</td>
</tr>
<tr>
<td>9</td>
<td>Figure S8. PLATON diagram for 25</td>
<td>S7</td>
</tr>
<tr>
<td>10</td>
<td>Figure S9. PLATON diagram for 26</td>
<td>S7</td>
</tr>
<tr>
<td>11</td>
<td>Figure S10. PLATON diagram for 29</td>
<td>S8</td>
</tr>
<tr>
<td>12</td>
<td>Figure S11. PLATON diagram for 32</td>
<td>S8</td>
</tr>
<tr>
<td>13</td>
<td>Figure S12. PLATON diagram for 34</td>
<td>S8</td>
</tr>
<tr>
<td>14</td>
<td>Figure S13. PLATON diagram for 35</td>
<td>S9</td>
</tr>
<tr>
<td>15</td>
<td>Figure S14. PLATON diagram for 37</td>
<td>S9</td>
</tr>
<tr>
<td>15</td>
<td>Figures S15-S47. Copies of NMR spectra</td>
<td>S10-S40</td>
</tr>
<tr>
<td>16</td>
<td>Reference</td>
<td>S40</td>
</tr>
</tbody>
</table>
General experimental details and crystal data

Chemicals were purified when required according to standard procedures. All reactions, unless stated otherwise, were performed in a dry nitrogen atmosphere. ^{1}H, $^{13}C\{^{1}H\}$ and $^{31}P\{^{1}H\}$ NMR spectra were recorded using a 200 or a 400 MHz spectrometer in CDCl$_3$ (unless stated otherwise) with shifts referenced to SiMe$_4$ ($\delta = 0$) or 85 % H$_3$PO$_4$ ($\delta = 0$). Infrared spectra were recorded neat or by using KBr pellets on an FT/IR spectrometer. Melting points were determined by using a local hot-stage melting point apparatus and are uncorrected. Microanalyses were performed using a CHNS analyzer. For TLC, glass microslides were coated with silica-gel-GF$_{254}$ (mesh size 75µ) and spots were identified using iodine or UV chamber as appropriate. For column chromatography, silica gel of 100-200 mesh size was used. LC-MS or GC-MS equipment were used to record mass spectra for isolated compounds where appropriate. LC-MS data were obtained using electrospray ionization (positive mode) on a C-18 column at a flow rate 0.2 mL/min using MeOH/water (90:10) as eluent. GC-MS data were obtained on EI mode using ZB-1 column. Retention time (R_t) values for GC-MS (helium flow rate 4 mL/min) and LC-MS are quoted in min.

Crystal data:

8: C$_{15}$H$_{19}$O$_3$P, $M = 278.27$, Monoclinic, Space group $C2/c$, $a = 26.850(3)$, $b = 6.2772(8)$, $c = 20.267(3)$ Å, $V = 2991.1(6)$ Å3, $Z = 8$, $\mu = 0.185$ mm$^{-1}$, data/restraints/parameters: 2641 /0/ 174, R indices ($I > 2\sigma(I)$): R1 = 0.0504, wR2 (all data) = 0.1436.

12: C$_{16}$H$_{21}$O$_3$P, $M = 292.30$, Monoclinic, Space group $P2_1/c$, $a = 12.9844(15)$, $b = 6.2020(7)$, $c = 20.193(2)$ Å, $V = 1553.9(3)$ Å3, $Z = 4$, $\mu = 0.181$ mm$^{-1}$,
data/restraints/parameters: 2734/0/184, R indices \((I > 2\sigma(I))\): \(R1 = 0.0946, wR2 \) (all data) = 0.1880

16: \(C_{21}H_{23}O_3P\), \(M = 354.36\), Monoclinic, Space group \(P2(1)/c\), \(a = 15.8910(17)\), \(b = 10.2219(11)\), \(c = 12.2745(13) \text{ Å}\), \(V = 1988.2(4) \text{ Å}^3\), \(Z = 4\), \(\mu = 0.154 \text{ mm}^{-1}\),
data/restraints/parameters: 3496/0/228, R indices \((I > 2\sigma(I))\): \(R1 = 0.0554, wR2 \) (all data) = 0.1198.

17: \(C_{22}H_{23}N_2O_7P\), \(M = 458.39\), Orthorhombic, Space group \(Pbc\), \(a = 11.123(3)\), \(b = 14.730(4)\), \(c = 27.784(7) \text{ Å}\), \(V = 4552.2(19) \text{ Å}^3\), \(Z = 8\), \(\mu = 0.166 \text{ mm}^{-1}\),
data/restraints/parameters: 4012/0/292, R indices \((I > 2\sigma(I))\): \(R1 = 0.086, wR2 \) (all data) = 0.1879.

21: \(C_{14}H_{19}O_3P\), \(M = 266.26\), Monoclinic, Space group \(P2_1/n\), \(a = 7.5521(5)\), \(b = 17.6566(10)\), \(c = 10.9664(7) \text{ Å}\), \(V = 1414.15(15) \text{ Å}^3\), \(Z = 4\), \(\mu = 0.192 \text{ mm}^{-1}\),
data/restraints/parameters: 2475/0/166, R indices \((I > 2\sigma(I))\): \(R1 = 0.0478, wR2 \) (all data) = 0.1188.

23: \(C_{14}H_{17}O_4P\), \(M = 280.25\), Monoclinic, Space group \(P2_1/c\), \(a = 14.5201(18)\), \(b = 9.4279(12)\), \(c = 11.1618(14) \text{ Å}\), \(V = 1425.5(3) \text{ Å}^3\), \(Z = 4\), \(\mu = 0.200 \text{ mm}^{-1}\),
data/restraints/parameters: 2514/0/174, R indices \((I > 2\sigma(I))\): \(R1 = 0.0560, wR2 \) (all data) = 0.1367.

24: \(C_{15}H_{19}O_4P\), \(M = 294.27\), Orthorhombic, Space group \(Pna2_1\), \(a = 11.811(3)\), \(b = 6.0445(14)\), \(c = 20.369(5) \text{ Å}\), \(V = 1454.1(6) \text{ Å}^3\), \(Z = 4\), \(\mu = 0.199 \text{ mm}^{-1}\),
data/restraints/parameters: 3334/1/185, R indices \((I > 2\sigma(I))\): \(R1 = 0.0398, wR2 \) (all data) = 0.0919.
25: C_{15}H_{19}O_{4}P, M = 294.27, Orthorhombic, Space group P2_{1}2_{1}2_{1}, a = 8.253(3), b = 9.570(3), c = 18.751(6) Å, V = 1481.1(9) Å^{3}, Z = 4, µ = 0.196 mm^{-1}, data/restraints/parameters: 2577 /0/ 184, R indices (I > 2σ(I)): R1 = 0.0424, wR2 (all data) = 0.0904.

26: C_{16}H_{21}O_{4}P, M = 308.30, Monoclinic, Space group P2_{1}/c, a = 11.5766(14), b = 14.5541(18), c = 10.5240(13) Å, V = 1625.1(3) Å^{3}, Z = 4, µ = 0.181 mm^{-1}, data/restraints/parameters: 2867 /0/ 194, R indices (I > 2σ(I)): R1 = 0.0446, wR2 (all data) = 0.1116.

29: C_{34}H_{32}O_{2}, M = 472.60, Triclinic, Space group P\bar{1}, a = 10.915(12), b = 11.603(3), c = 12.983(2) Å, V = 1325.1(15) Å^{3}, Z = 2, µ = 0.072 mm^{-1}, data/restraints/parameters: 4660/0/ 329, R indices (I > 2σ(I)): R1 = 0.0522, wR2 (all data) = 0.0983.

32: C_{15}H_{17}O_{5}P, M = 308.26, Monoclinic, Space group C2/c, a = 36.090(4), b = 5.9889(6), c = 13.4654(15) Å, V = 2903.6(5) Å^{3}, Z = 8, µ = 0.208 mm^{-1}, data/restraints/parameters: 2539 /0/ 192, R indices (I > 2σ(I)): R1 = 0.0545, wR2 (all data) = 0.1132.

34: C_{17}H_{21}O_{5}P, M = 336.31, Orthorhombic, Space group Pca2_{1}, a = 25.252(2), b = 6.2471(5), c = 10.3606(9) Å, V = 1634.4(2) Å^{3}, Z = 4, µ = 0.191 mm^{-1}, data/restraints/parameters: 2887 /1/ 212, R indices (I > 2σ(I)): R1 = 0.0529, wR2 (all data) = 0.0751.

35: C_{16}H_{12}O_{2}, M = 236.26, Orthorhombic, Space group Pcab, a = 8.4723(18), b = 16.420(4), c = 17.215(4) Å, V = 2394.8(9) Å^{3}, Z = 8, µ = 0.086 mm^{-1}, data/restraints/parameters: 2097/0/ 164, R indices (I > 2σ(I)): R1 = 0.0695, wR2 (all data) = 0.0953.
37: C$_{13}$H$_{12}$O$_4$, $M = 232.23$, Monoclinic, Space group $P2_1/c$, $a = 15.994(5)$, $b = 5.1441(16)$, $c = 14.520(5)$ Å, $V = 1166.5(6)$ Å3, $Z = 4$, $\mu = 0.098$ mm$^{-1}$, data/restraints/parameters: 2270 /0/ 155, R indices ($I > 2\sigma(I)$): R1 = 0.0660, wR2 (all data) = 0.1900.

Figure S1. A PLATON drawing of 8

Figure S2. A PLATON drawing of 12
Figure S3. A PLATON drawing of 16

Figure S4. A PLATON drawing of 17

Figure S5. A PLATON drawing of 21
Figure S6. A PLATON drawing of 23

Figure S7. A PLATON drawing of 24

Figure S8. A PLATON drawing of 25
Figure S9. A PLATON drawing of 26

Figure S10. A PLATON drawing of 29

Figure S11. A PLATON drawing of 32
Figure S12. A PLATON drawing of 34

Figure S13. A PLATON drawing of 35

Figure S14. A PLATON drawing of 37
Figure S15a. 1H NMR spectrum of compound 8

Figure S15b. 13C NMR spectrum of compound 8
Figure S16a. 1H NMR spectrum of compound 9

Figure S16b. 13C NMR spectrum of compound 9
Figure S17a. 1H NMR spectrum of compound 10

Figure S17b. 13C NMR spectrum of compound 10
Figure S18. 13C NMR spectrum of compound 11

Figure S19a. 1H NMR spectrum of compound 12
Figure S19b. 13C NMR spectrum of compound 12

Figure S20a. 1H NMR spectrum of compound 13
Figure S20b. 13C NMR spectrum of compound 13

Figure S21a. 1H NMR spectrum of compound 14
Figure S21b. 13C NMR spectrum of compound 14

Figure S22a. 1H NMR spectrum of compound 15
Figure S22b. 13C NMR spectrum of compound 15

Figure S23a. 1H NMR spectrum of compound 16
Figure S23b. 13C NMR spectrum for compound 16

Figure S24a. 1H NMR spectrum of compound 17
Figure S24b. 13C NMR spectrum for compound 17

Figure S25a. 1H NMR spectrum of compound 18
Figure S25b. 13C NMR spectrum for compound 18

Figure S26a. 1H NMR spectrum for compound 19
Figure S26b. 13C NMR spectrum for compound 19

Figure S27a. 1H NMR spectrum of compound 20
Figure S27b. 13C NMR spectrum of compound 20

Figure S28a. 1H NMR spectrum of compound 21
Figure S28b. 13C NMR spectrum of compound 21

Figure S29a. 1H NMR spectrum of compound 22
Figure S29. 13C NMR spectrum of compound 22

Figure S30. 1H NMR spectrum of compound 23
Figure S31a. 1H NMR spectrum of compound 24

Figure S32b. 13C NMR spectrum for compound 24
Figure S33a. 1H NMR spectrum of compound 25

Figure S33b. 13C NMR spectrum for compound 25
Figure S34a. 1H NMR spectrum of compound 26

Figure S34b. 13C NMR spectrum for compound 26
Figure S35a. 1H NMR spectrum of compound 27

Figure S35b. 13C NMR spectrum for compound 27
Figure S36a. 1H NMR spectrum of compound 29

Figure S36b. 13C NMR spectrum for compound 29
Figure S37a. 1H NMR spectrum for compound 30

Figure S37b. 13C NMR spectrum for compound 30
Figure S38a. 1H NMR spectrum for compound 31

Figure S38b. 13C NMR spectrum for compound 31
Figure S39a. 1H NMR spectrum of compound 32

Figure S39b. 13C NMR spectrum for compound 32
Figure S40. 13C NMR spectrum for compound 33

Figure S41a. 1H NMR spectrum of compound 34
Figure S41b. 13C NMR spectrum for compound 34

Figure S42a. 1H NMR spectrum of compound 35
Figure S42b. 13C NMR spectrum for compound 35

Figure S43a. 1H NMR spectrum of compound 36
Figure S43b. 13C NMR spectrum for compound 36

Figure S44a. 1H NMR spectrum for compound 37
Figure S44b. 13C NMR spectrum for compound 37

Figure S45a. 1H NMR spectrum for compound 38a
Figure S45b. 13C NMR spectrum for compound 38a

Figure S46a. 1H NMR spectrum for compound 38b
Figure S46b. 13C NMR spectrum for compound 38b

Figure S47a. 1H NMR spectrum for compound 39
Figure S47b. 13C NMR spectrum for compound 39

Reference: