Chemically- and Electrochemically-Mediated Release of Dendrimer End Groups

Winston Ong and Robin L. McCarley*
Department of Chemistry and Center for Biomodular and Multiscale Systems
Louisiana State University, Baton Rouge, LA 70803-1804
tunnel@lsu.edu

Supporting Information
Figure S1. 1H NMR spectra of dendrimers 1–5. Resonance assignments for 1 and 5 are shown. Resonances marked with symbols (*, + and #) correspond to unremoved/residual solvents (hexanes, H$_2$O and CH$_2$Cl$_2$, respectively)
Figure S2. MALDI-TOF mass spectra of dendrimers 1–5 in dithranol matrix. Peaks marked with an asterisk correspond to the molecular ion values for the dendrimers and are expanded in the inset of each spectrum.
Figure S3. 1H NMR spectra of the electrolysis products of dendrimer 5 from Figure 4 (A), dendrimer 1 (B) and the control medium DMSO-H$_2$O/KPF$_6$ (C). Spectrum C clearly shows that the resonance at δ 2.99 ppm in spectrum B arises from the electrolysis of the DMSO-H$_2$O/KPF$_6$ medium. The deuterated solvent used for spectra acquisition are shown in the top-right corner of each spectrum.