Sequential Catalytic Isomerization and Allylic Substitution. Conversion of Racemic Branched Allylic Carbonates to Enantioenriched Allylic Substitution Products

Supporting Information

Shashank Shekhar, Brian Trantow, Andreas Leitner and John F. Hartwig*

Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107

John. Hartwig@yale.edu
Experimental

General: All manipulations were carried out under an inert atmosphere using a nitrogen-filled glovebox or standard Schlenk techniques. All glassware was oven dried immediately prior to use. THF was degassed by purging with nitrogen for 45 min and dried with a solvent purification system containing a 1 m column containing activated alumina. Isopropylamine was dried over CaH$_2$ for 12 h at 50$^\circ$C and distilled under nitrogen. Anhydrous EtOH (99.9 %) and all other reagents were obtained from commercial sources and used without further purification. 1H NMR spectra were obtained at 400 or 500-MHz and recorded relative to residual protio-solvent. 13C NMR spectra were obtained at 101 or 126 MHz, and chemical shifts were recorded relative to the solvent resonance. [Ir(COD)Cl]$_2$, the $O,O'-(S$,$S)$-phenylethylphosphoramidite, the $O,O'-(1,1'\text{-Dinaphthyl}-2,2'\text{-diyl})$-$N,N'$-di-($S,S$)-naphthylethylphosphoramidite, and the $O,O'-(1,1'\text{-Biphenyl}-2,2'\text{-diyl})$-$N,N'$-($R$)-phenylethylcyclooctylphosphoramidite were prepared according to published procedures.1

Synthesis of allylic carbonates and acetates. All branched allylic carbonates and acetates were prepared by the reaction of the corresponding aldehydes with vinylmagnesium chloride at 0$^\circ$C in THF to generate the allylic alcohol. The progress of the reaction was monitored by GC-mass spectroscopy. For the synthesis of the carbonates, methyl chloroformate (1.3 equiv) and pyridine (5 equiv) were added to the reaction mixture at 0 °C after complete consumption of aldehyde. For the synthesis of the acetates, acetic anhydride (1.5 equiv) was added to the reaction mixture at 0 °C after complete consumption of aldehyde. The reaction mixtures were stirred for 1 h, at which time conversion of allylic alcohol to allylic carbonate or acetate was complete. The reaction mixtures were washed with 1 N HCl solution until the pH of the organic layer was 1, and the organic layers were washed with aqueous NaHCO$_3$ solution until pH of the organic layer was 7. The organic layers were then dried over anhydrous MgSO$_4$, the solvent was evaporated, and the products were purified by column chromatography. The allylic esters 1a-e were purified by silica gel chromatography and the allylic esters
1f-i were purified by chromatography using basic N-H silica gel from Fuji Sylsia Chemical Ltd.

General Procedures for the Enantioselective Allylic Substitution Reactions. In a drybox, stock solutions of Pd(dba)$_2$ (8 mM) and PPh$_3$ (16 mM) were prepared by weighing Pd(dba)$_2$ (4.6 mg, 0.08 µmol) and PPh$_3$ (4.2 mg, 0.16 µmol) into two vials and adding 1.0 mL THF to each vial. To a reaction vial containing a magnetic stirrer, was added by syringe 0.25-0.50 mL of each stock solution, the appropriate amount of THF to make the final volume of 1 mL and 1.0 mmol branched allylic ester. The vial was sealed with a cap containing a PTFE septum, and the reaction mixture was removed from the box and stirred at room temperature or 60 °C until the branched carbonate was fully converted to the linear carbonate, as determined by GC.

The Ir-catalyst was prepared by weighing [Ir(COD)Cl]$_2$ (0.015-0.020 mmol) and the phosphoramidite ligand (0.030-0.040 mmol) into a reaction vial and adding 0.2 mL THF and 0.2 mL propylamine. The vial was sealed with a cap containing a PTFE septum. The reaction mixture was removed from the box and was heated at 50 °C for 1 h. The vial was brought back inside the box, and the volatile materials were evaporated. The vial containing the isomerized reaction mixture was also brought back into the box and was filtered through a 10 x 6 mm plug of silica gel (in a 9 mm pipette) into a reaction vial containing the activated Ir-catalyst. The silica gel was washed with 0.2 mL THF, the nucleophile (1.2-2.0 mmol) was added, and the reaction mixture was stirred at room temperature until the linear ester was fully converted to the allylic substitution product, as determined by GC. The ratio of regioisomers (branched to linear b/l) was determined by 1H NMR spectroscopy of the crude reaction mixture. The crude reaction mixture was purified by flash column chromatography on silica gel (hexanes/ether or hexane/ethyl acetate) to give desired product.

Examples of the enantioselective allylic substitution of branched allylic esters (Table 2). *N*(1-phenyl-prop-2-enyl)benzylamine (entry 1). The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)$_2$, 0.25 mL of the stock solution of PPh$_3$, 1a (0.192 g, 1.00 mmol), [(COD)IrCl]$_2$ (0.010 g, 0.015 mmol), L3 (0.015 g, 0.030 mmol),
and benzylamine (0.128 g, 1.20 mmol). The isomerization reaction was conducted at room temperature for 4 h, and the allylic substitution was conducted at room temperature for 4 h. 1H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 98/2. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:1) to give the title compound (0.168 g, 72%). HPLC analysis indicated that the enantiomeric excess of the product was 93% [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 99.0/1.0; flow rate = 0.5 mL/min; detection wavelength = 230 nm; TR = 11.9 (major), 13.3 (minor) min]. 1H NMR (500.13 MHz, CDCl$_3$) δ 7.30–7.39 (m, 8H), 7.22–7.28 (m, 2H), 5.95 (ddd, J = 16.8, 10.0, 7.2 Hz, 1H), 5.23 (dt, J = 16.8, 1.6 Hz, 1H), 5.12 (dq, J = 10.0, 0.8 Hz, 1H), 4.23 (d, J = 7.2 Hz, 1H), 3.75 (d, J = 13.4 Hz, 1H), 3.71 (d, J = 13.4 Hz, 1H), 1.64 (brs, 1H). 13C NMR (125.7 MHz, CDCl$_3$) δ 142.74 (s), 140.90 (s), 140.38 (s), 128.53 (s), 128.37 (s), 128.15, 127.31, 127.21, 126.89, 115.18, 65.09, 51.26.

(1-phenyl)-prop-2-enyl-morpholine (entry 2).2 The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)$_2$, 0.25 mL of the stock solution of PPh$_3$, 1a (0.192 g, 1.00 mmol), [(COD)IrCl]$_2$ (0.010 g, 0.015 mmol), L3 (0.015 g, 0.030 mmol), and benzylamine (0.105 g, 1.20 mmol). The isomerization reaction was conducted at room temperature for 4 h, and the allylic substitution was conducted at room temperature for 4 h. 1H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 98/2. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:1) to give the title compound (0.178 g, 89%). HPLC analysis indicated that the enantiomeric excess of the product was 94% [Diacel CHIRALCEL OJ (0.46 cm x 25 cm); hexanes/2-propanol/diethylamine = 98.99/1/0.01; flow rate = 0.5 mL/min; detection wavelength = 210 nm; TR = 12.4 (minor), 13.7 (major) min]. 1H NMR (500.13 MHz, CDCl$_3$) δ 7.25–7.19 (m, 4H), 7.15–7.11 (m, 1H), 5.81 (ddd, J = 17.0, 9.0, 9.0 Hz, 1H), 5.13 (dd, J = 17.0, 0.7 Hz, 1H), 5.00 (dd, J = 10.0, 1.3 Hz, 1H), 3.59-3.58 (m, 4H), 3.53 (d, J = 8.8 Hz, 1H), 2.43–2.55 (m, 2H), 2.29–2.37 (m, 2H). 13C NMR
(125.7 MHz, CDCl$_3$) δ 142.05 (s), 140.21 (s), 129.00 (s), 128.39 (s), 127.67 (s), 117.01 (s), 75.88 (s), 67.58 (s), 52.42 (s).

N-Phenyl-1-phenyl-prop-2-enylamine (entry 3).\(^2\) The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)$_2$, 0.25 mL of the stock solution of PPh$_3$, 1a (0.192 g, 1.00 mmol), [(COD)IrCl]$_2$ (0.010 g, 0.015 mmol), L3 (0.015 g, 0.030 mmol), and benzylamine (0.112 g, 1.20 mmol). The isomerization reaction was conducted at room temperature for 4 h, and the allylic substitution was conducted at room temperature for 4 h. 1H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 98/2. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:0.5) to give the title compound (0.174 g, 83%). HPLC analysis indicated that the enantiomeric excess of the product was 94% [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 99.0/1.0; flow rate = 0.5 mL/min; detection wavelength = 230 nm; TR = 22.3 (major), 21.2 (minor) min]. 1H NMR (500.13 MHz, CDCl$_3$) δ 7.52-7.46 (m, 4H), 7.42-7.38 (m, 1H), 7.28-7.25 (m, 2H) 6.84 (t, J = 7.3 Hz, 1H), 6.73 (dd, J = 8.4, 0.8 Hz, 2H), 6.17 (ddd, J = 17.1, 10.3, 5.8 Hz, 1H), 5.41 (dt, J = 17.2, 1.3 Hz, 1 H), 5.36 (dt, J = 10.2, 1.2 Hz, 1 H), 5.07 (d, J = 5.6 Hz, 1 H), 4.15 (brs, 1 H). 13C NMR (125.7 MHz, CDCl$_3$) δ 147.75 (s), 142.42 (s), 139.46 (s), 129.64 (s), 129.26 (s), 127.89 (s), 127.68 (s), 118.17 (s), 116.56 (s), 114.11 (s), 61.37 (s).

1-(2-Flouro-phenyl)-prop-2-enyl-morpholine (entry 4). The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)$_2$, 0.25 mL of the stock solution of PPh$_3$, 1b (0.210 g, 1.00 mmol), [(COD)IrCl]$_2$ (0.013 g, 0.020 mmol), L2 (0.025 g, 0.040 mmol) or L3 (0.020 g, 0.040 mmol), and morpholine (0.105 g, 1.20 mmol). The isomerization reaction was conducted at room temperature for 6 h, and the allylic substitution was conducted at room temperature for 5 h. 1H NMR analysis of the crude reaction mixture
indicated the ratio of regioisomers (b/l) to be 99/1 when either \textbf{L2} or \textbf{L3} was used as ligand. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:0.5) to give the title compound (0.182 g, 82%) when \textbf{L2} was used as ligand and (0.140 g, 63%) when \textbf{L3} was used as ligand. HPLC analysis indicated that the enantiomeric excess of the product was 82% when either \textbf{L2} or \textbf{L3} was used as ligand [Diacel CHIRALCEL OJ-H (0.46 cm x 25 cm); hexanes/2-propanol = 99.99/0.1; flow rate = 0.3 mL/min; detection wavelength = 210 nm; TR = 28.7 (major), 33.1 (minor) min]. 1H NMR (499.95 MHz, CDCl\textsubscript{3}) δ 7.40–7.37 (t, $J = 7.4$, 1H), 7.15–7.11 (m, 1H), 7.04 (t, $J = 7.5$ Hz, 1H), 6.97–6.93 (m, 1H), 5.80 (ddd, $J = 17.4$, 7.3, 7.0 Hz, 1H), 5.22 (d, $J = 17.0$ Hz, 1H), 5.05 (d, $J = 8.8$ Hz, 1H), 4.00 (d, $J = 8.6$ Hz, 1H), 3.61 (t, $J = 9.2$ Hz, 4H), 2.42 (b, 2H), 2.30–2.25 (m, 2H). 13C NMR (125.7 MHz, CDCl\textsubscript{3}) δ 160.80 (d, $J = 246$ Hz), 138.55 (s), 129.07 (d, $J = 4.3$ Hz), 128.46 (s), 128.14 (d, $J = 12.9$ Hz), 124.20 (d, $J = 3.4$ Hz), 117.14 (s), 115.52 (d, $J = 22.3$ Hz), 67.39 (s), 66.65 (s), 51.86 (s). Anal. Calcd. for C_{13}H_{16}FNO: C, 70.56; H, 7.29; N, 6.33; Found: C, 70.65; H, 7.45; N, 6.15.

\textbf{1-(3-methoxy-phenyl)-prop-2-enyl-morpholine (entry 5).} The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)$_2$, 0.25 mL of the stock solution of PPh$_3$, \textbf{1c} (0.222 g, 1.00 mmol), [(COD)IrCl]$_2$ (0.013 g, 0.020 mmol), \textbf{L2} (0.025 g, 0.040 mmol), and morpholine (0.105 g, 1.2 mmol). The isomerization reaction was conducted at room temperature for 4 h, and the allylic substitution was conducted at room temperature for 5 h. 1H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 99/1. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:1.0) to give the title compound (0.192 g, 82%). HPLC analysis indicated that the enantiomeric excess of the product was 95.5% [Diacel CHIRALCEL OJ-H (0.46 cm x 25 cm); hexanes/2-propanol = 97.5/2.5; flow rate = 0.5 mL/min; detection wavelength = 220 nm; TR = 15.5 (major), 19.2 (minor) min]. 1H NMR (499.95 MHz, C$_6$D$_6$) δ 7.22 (b, 1H), 7.18 (t, $J = 7.8$ Hz, 1H), 7.12–7.11 (m, 1H), 7.01 (d, $J = 7.5$ Hz, 1H), 6.76 (dd, $J = 8.2$, 2.0 Hz, 1H), 5.89 (ddd, $J = 17.9$, 9.0, 8.9 Hz, 1H), 5.12 (dd, J
= 17.1, 1.5 Hz, 1H), 4.98 (dd, J = 10.1, 1.7 Hz, 1H), 3.68-3.61 (m, 4H), 3.52 (d, J = 8.8 Hz, 1H), 3.44 (s, 3H), 2.39 (b, 2H), 2.32-2.27 (m, 2H). \(^{13}\)C NMR (125.7 MHz, C\(_6\)D\(_6\)) \(\delta\) 159.22 (s), 142.57 (s), 138.95 (s), 128.44 (s), 118.99 (s), 114.92 (s), 112.67 (s), 111.42 (s), 74.38 (s), 65.86 (s), 53.36 (s), 51.00 (s). Anal. Calcd. for C\(_{14}\)H\(_{19}\)NO\(_2\): C, 72.07; H, 8.21; N, 6.00; Found: C, 71.74; H, 8.28; N, 6.01.

1-(4-trifluoromethyl-phenyl)-prop-2-enyl-morpholine (entry 6). The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)\(_2\), 0.25 mL of the stock solution of PPh\(_3\), 1d (0.260 g, 1.00 mmol), [(COD)IrCl]\(_2\) (0.013 g, 0.020 mmol), L2 (0.025 g, 0.040 mmol), and morpholine (0.105 g, 1.20 mmol). The isomerization reaction was conducted at room temperature for 6 h, and the allylic substitution was conducted at room temperature for 5 h. \(^1\)H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 99/1. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:0.1) to give the title compound (0.197 g, 72%). HPLC analysis indicated that the enantiomeric excess of the product was 94% [Diacel CHIRALCEL AD-H (0.46 cm x 25 cm); hexanes/2-propanol = 99.5/0.5; flow rate = 0.5 mL/min; detection wavelength = 220 nm; TR = 17.6 (major), 16.5 (minor) min]. \(^1\)H NMR (400.25 MHz, CDCl\(_3\)) \(\delta\) 7.48 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 5.69 (ddd, J = 17.9, 8.5, 7.2 Hz, 1H), 5.08 (d, J = 17.1 Hz, 1H), 4.99 (d, J = 10.0 Hz, 1H), 3.70-3.66 (m, 4H), 3.46 (d, J = 10.1 Hz, 1H), 2.32 (b, 2H), 2.22-2.13 (m, 2H). \(^{13}\)C NMR (125.7 MHz, CDCl\(_3\)) \(\delta\) 146.28 (s), 139.28 (s), 130.05 (q, J = 97.0 Hz), 128.62 (s), 125.94 (q, J = 11.4 Hz), 123.48 (s), 117.92 (s), 75.39 (s), 67.48 (s), 52.28 (s). Anal. Calcd. for C\(_{14}\)H\(_{18}\)F\(_3\)NO: C, 61.98; H, 5.94; N, 5.16; Found: C, 62.26; H, 5.98; N, 5.16.

1-(4-chloro-phenyl)-prop-2-enyl-morpholine (entry 7). The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)\(_2\), 0.25 mL of the stock solution of PPh\(_3\), 1e (0.226 g, 1.00 mmol), [(COD)IrCl]\(_2\) (0.013 g, 0.020 mmol), L2 (0.025 g, 0.040 mmol), and morpholine (0.105 g, 1.20 mmol). The isomerization reaction was conducted at room
temperature for 6 h, and the allylic substitution was conducted at room temperature for 5 h. \(^1\)H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 99/1. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:0.5) to give the title compound (0.194 g, 83%). HPLC analysis indicated that the enantiomeric excess of the product was 96%. After recrystallization from ether a single crop the product was recovered in 52% yield with an enantiomeric excess of 98% [Diacel CHIRALCEL AS-H (0.46 cm x 25 cm); hexanes/2-propanol = 99.5/0.5; flow rate = 0.5 mL/min; detection wavelength = 220 nm; TR = 14.2 (major), 12.4 (minor) min]. \(^1\)H NMR (499.95 MHz, C\(_6\)D\(_6\)) \(\delta\) 7.24 (d, \(J = 8.5\) Hz, 2H), 7.11 (d, \(J = 8.5\) Hz, 2H), 5.74 (ddd, \(J = 18.0, 9.1, 8.9\) Hz, 1H), 5.09 (dd, \(J = 17.2, 1.1\) Hz, 1H), 5.00 (dd, \(J = 10.0, 1.6\) Hz, 1H), 3.53-3.51 (m, 4H), 3.44 (d, \(J = 11.4\) Hz, 1H), 2.34 (b, 2H), 2.24-2.18 (m, 2H). \(^13\)C NMR (125.7 MHz, C\(_6\)D\(_6\)) \(\delta\) 140.75 (s), 139.75 (s), 132.84 (s), 129.58 (s), 128.98 (s), 116.86 (s), 74.68 (s), 67.18 (s), 52.14 (s). Anal. Calcd. for C\(_{13}\)H\(_{16}\)ClNO: C, 65.68; H, 6.78; N, 5.89; Found: C, 65.66; H, 6.81; N, 6.64.

1-(4-methoxy-phenyl)-prop-2-enyl-benzylamine (entry 8). The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)\(_2\), 0.25 mL of the stock solution of PPh\(_3\), 1f (0.206 g, 1.00 mmol), [(COD)IrCl]\(_2\) (0.013 g, 0.020 mmol), L1 (0.022 g, 0.040 mmol) or L2 (0.025 g, 0.040 mmol) or L3 (0.020 g, 0.040 mmol) and benzylamine (0.210 g, 2.00 mmol). EtOH 0.4 mL was used as a co-solvent. The isomerization reaction was conducted at 60°C for 12 h, and the allylic substitution was conducted at room temperature for 15 h. \(^1\)H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 99/1. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:1.0) to give the title compound (0.190 g, 75%) when L1 was used as ligand, 0.210 g, (83%) when L2 was used as ligand, and 0.195 g, (77%) when L3 was used as ligand. HPLC analysis indicated that the enantiomeric excess of the product was 86.6% when L1 was used as ligand, 94.4% when L2 was used as ligand, and 86% when L3 was used as ligand [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 99/1; flow rate = 0.6 mL/min; detection wavelength = 230 nm; TR = 12.7 (minor), 15.8 (major) min]. \(^1\)H
NMR (499.95 MHz, C\textsubscript{6}D\textsubscript{6}) \(\delta 7.27-7.24\) (m, 4H), 7.19–7.14 (m, 2H), 7.10 (d, \(J = 7.3\) Hz, 1H), 6.81 (d, \(J = 8.7\) Hz, 2H), 5.88 (ddd, \(J = 17.1, 10.2, 6.9\) Hz, 1H), 5.12 (dt, \(J = 17.1, 1.4\) Hz, 1H), 4.98 (dt, \(J = 10.1, 1.3\) Hz, 1H), 4.08 (d, \(J = 6.9\) Hz, 1H), 3.59 (s, 2H), 3.29 (s, 3H).\(^{13}\)C NMR (125.7 MHz, C\textsubscript{6}D\textsubscript{6}) \(\delta 159.69\) (s), 142.87 (s), 141.33 (s), 135.69 (s), 129.27 (s), 128.83 (s), 128.72 (s), 126.99 (s), 114.76 (s), 114.51 (s), 65.08 (s), 55.08 (s), 51.61 (s).

1-(thiophene)-prop-2-enyl-benzylamine (entry 9). The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)\(_2\), 0.25 mL of the stock solution of PPh\(_3\), 1g (0.182 g, 1.00 mmol), [(COD)IrCl]\(_2\) (0.013 g, 0.020 mmol), L3 (0.020 g, 0.040 mmol), and benzylamine (0.210 g, 2.00 mmol). EtOH 0.4 mL was used as a co-solvent. The isomerization reaction was conducted at 60° C for 6 h, and the allylic substitution was conducted at room temperature for 8 h. \(^1\)H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 98/2. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:1.0) to give the title compound (0.180 g, 79%). HPLC analysis indicated that the enantiomeric excess of the product was 93% [Diacel CHIRALCEL OJ-H (0.46 cm x 25 cm); hexanes/2-propanol = 99.75/0.25; flow rate = 0.5 mL/min; detection wavelength = 220 nm; TR = 16.7 (major), 22.8 (minor) min]. \(^1\)H NMR (500.13 MHz, C\textsubscript{6}D\textsubscript{6}) \(\delta 7.27\) (d, 2H, \(J = 7.3\) Hz), 7.18–7.15 (m, 2H), 7.09 (t, \(J = 7.3\) Hz, 1H), 6.9 (dd, \(J = 5.0, 1.1\) Hz, 1H), 6.78-6.74 (m, 2H), 5.77 (ddd, \(J = 17.1, 9.8, 7.5\) Hz, 1H), 5.03 (d, \(J = 17.0\) Hz, 1H), 4.96 (dd, \(J = 10.0, 0.6\) Hz, 1H), 4.28 (d, \(J = 7.3\) Hz, 1H), 3.61 (s, 2H). \(^{13}\)C NMR (125.7 MHz, C\textsubscript{6}D\textsubscript{6}) \(\delta 148.36\) (s), 141.07 (s), 140.61 (s), 128.65 (s), 128.56 (s), 127.21 (s), 126.54 (s), 124.73 (s), 124.31 (s), 115.82 (s), 60.71 (s), 51.19 (s). Anal. Calcd. for C\(_{14}\)H\(_{15}\)NS: C, 73.32; H, 6.59; N, 6.11; Found: C, 73.32 ; H, 6.63; N, 6.08.
Sequential reactions of dienyl carbonates.

![Chemical Reaction](image)

Figure S1. Sequential reaction of dienyl carbonate 1h-i

The palladium-catalyzed isomerization of 1h gave 2h', in addition to the expected linear product 2h (Figure S1). The two linear carbonates 2h and 2h' were obtained in 9:1 ratio after 2 h. A decrease in the ratio of 2h and 2h' was observed if the isomerization reaction was run for longer times. For example, 2h and 2h' were formed in 5:1 ratio after 5 h. Although the Ir-catalyzed amination of both 2h and 2h' gave 4h as the major product, higher ee's were obtained from isomeric mixtures containing larger ratios of 2h to 2h'. Thus, to obtain 4h in high enantiomeric excess, the palladium-catalyzed isomerization of 1h must be run for reaction times that minimize the amount of 2h'. The isomerization of 1h for 1.5-2 h, followed by Ir-catalyzed allylic amination, gave the desired product in 57% yield with an enantiomeric excess of 88%.

Palladium-catalyzed isomerization of dienylcarbonate 1i formed the expected linear product 2i without significant formation of 2i'. Subsequent Ir-catalyzed allylic amination of 2i formed the product in moderate yield and good enantiomeric excess.

Benzyl-(1-vinyl-but-2-enyl)-amine (entry 10). The general procedure was followed with 0.50 mL of the stock solution of Pd(dba)$_2$, 0.50 mL of the stock solution of PPh$_3$, 1h (0.156 g, 1.00 mmol), [(COD)IrCl]$_2$ (0.013 g, 0.020 mmol), L2 (0.025 g, 0.040 mmol) or L3 (0.020 g, 0.040 mmol), and benzylamine (0.112 g, 1.20 mmol). The isomerization reaction was conducted at room temperature for 2 h, and the allylic substitution was conducted at room temperature for 3 h. 1H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 95/5 when either L2 or L3 was used as ligand. The
mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:1-5:1) to give the title compound (0.107 g, 57%) when L2 was used as ligand and (0.093 g, 50%) when L3 was used as ligand. HPLC analysis indicated that the enantiomeric excess of the product was 88 % [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 98/2; flow rate = 0.6 mL/min; detection wavelength = 220 nm; TR = 7.4 (minor), 8.6 (major) min]. 1H NMR (500.13 MHz, C6D6) δ 7.30 (d, J = 4.8 Hz, 2H), 7.18 (t, J = 7.4 Hz, 2H), 7.09 (t, J = 7.3 Hz, 1H), 5.75 (ddd, J = 18.7, 10.0, 3.8 Hz, 1H), 5.45 (dq, J = 15.4, 5.8 Hz, 1H), 5.35 (ddd, J = 15.4, 6.9, 1.3 Hz, 1H), 5.12 (d, J = 17.2 Hz, 1H), 4.99 (d, J = 17.6, 1H), 3.65 (s, 2H), 3.53 (t, J = 6.8 Hz, 1H), 1.43 (d, J = 6.1 Hz, 3H). 13C NMR (125.7 MHz, C6D6) δ 141.77 (s), 141.32 (s), 133.79 (s), 128.90 (s), 128.78 (s), 127.24 (s), 126.57 (s), 114.91 (s), 63.43 (s), 51.52 (s), 18.07 (s).

Benzyl-(4-methyl-1-vinyl-pent-2-enyl)-amine (entry 11). The general procedure was followed with 0.38 mL of the stock solution of Pd(dba)2, 0.38 mL of the stock solution of PPh3, L1 (0.184 g, 1.00 mmol), [(COD)IrCl]2 (0.013 g, 0.020 mmol), L2 (0.025 g, 0.040 mmol), and benzylamine (0.112 g, 1.20 mmol). The isomerization reaction was conducted at room temperature for 12 h, and the allylic substitution was conducted at room temperature for 3 h. 1H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 94/6. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:0.2) to give the title compound (0.107 g, 70 %). HPLC analysis indicated that the enantiomeric excess of the product was 88 % [Diacel CHIRALCEL OD-H (0.46 cm x 25 cm); hexanes/2-propanol = 99.5/0.5; flow rate = 0.5 mL/min; detection wavelength = 230 nm; TR = 10.2 (minor), 13.4 (major) min]. 1H NMR (500.13 MHz, C6D6) δ 7.31 (d, J = 7.2 Hz, 2H), 7.19-7.14 (m, 2H), 7.09 (t, J = 7.3 Hz, 1H), 5.79-5.73 (m, 1H), 5.49 (dd, J = 15.5, 6.6 Hz, 1H), 5.33 (ddd, J = 15.5, 7.1, 1.0 Hz, 1H), 5.12 (d, J = 17.2 Hz, 1H), 5.00 (dd, J = 10.3, 0.6 1H), 3.67 (s, 2H), 3.55 (t, J = 6.8 Hz, 1H), 2.16 (oct, J = 6.7 Hz, 1H), 0.92 (d, J = 2.1 Hz, 3H), 0.90 (d, J = 2.2 Hz, 3H). 13C NMR (125.7 MHz, C6D6) δ 141.54 (s), 141.23 (s), 138.98
(s), 129.35 (s), 128.56 (s), 128.51 (s), 127.02 (s), 114.74 (s), 63.15 (s), 51.19 (s), 31.25 (s), 22.67 (s), 22.63 (s). Anal. Calcd. for C_{15}H_{21}N: C, 83.67; H, 9.83; N, 6.50; Found: C, 83.52 ; H, 9.83; N, 6.51 .

1-phenyl-prop-2-enylphenylether (entry 12). The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)$_2$, 0.25 mL of the stock solution of PPh$_3$, 1a (0.192 g, 1.00 mmol), [(COD)IrCl]$_2$ (0.010 g, 0.015 mmol), L1 (0.016 g, 0.030 mmol) or L3 (0.015 g, 0.030 mmol), and lithium phenoxide (0.210 g, 2.10 mmol). Additional 1 mL THF was added. The isomerization reaction was conducted at room temperature for 4 h, and the allylic substitution was conducted at room temperature for 12 h. 1H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 90/10 when L1 was used as ligand and 85/15 when L3 was used as ligand. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:0.1) to give the title compound (0.159 g, 76%) when L1 was used as ligand and (0.151 g, 72%) when L3 was used as ligand. HPLC analysis indicated that the enantiomeric excess of the product was 94% when L1 was used as ligand and 92% when L3 was used as ligand [Diacel CHIRALCEL OJ-H (0.46 cm x 25 cm); hexanes/2-propanol = 99.7/0.3; flow rate = 0.8 mL/min; detection wavelength = 220 nm; TR = 30.9 (major), 38.1 (minor) min]. 1H NMR (500.13 MHz, CDCl$_3$) δ 7.34-7.32 (m, 2H), 7.28-7.25 (m, 2H), 7.21-7.19 (m, 1H), 7.16-7.12 (m, 1H), 6.86-6.81 (m, 4H), 6.05-5.98 (m, 1H), 5.55 (d, J = 6.0 Hz, 1H), 5.26 (dq, J = 17.2, 1.0 Hz, 1H), 5.17 (dq, J = 10.4, 1.0 Hz, 1H). 13C NMR (125.7 MHz, CDCl$_3$) δ 157.93 (s), 140.16 (s), 137.99 (s), 129.33 (s), 128.64 (s), 127.82 (s), 126.62 (s), 120.99 (s), 116.49 (s), 116.21 (s), 80.82 (s).

Dimethyl(1-phenyl-prop-2-enyl)malonate (entry 13). The general procedure was followed with 0.25 mL of the stock solution of Pd(dba)$_2$, 0.25 mL of the stock solution of PPh$_3$, 1a (0.192 g, 1.00 mmol), [(COD)IrCl]$_2$ (0.010 g, 0.015 mmol), L1 (0.016 g, 0.030 mmol) or L3 (0.015 g, 0.030 mmol), and sodium dimethylmalonate (0.185 g, 1.20 mmol). The
isomerization reaction was conducted at room temperature for 4 h, and the allylic substitution was conducted at room temperature for 1.5 h. 1H NMR analysis of the crude reaction mixture indicated the ratio of regioisomers (b/l) to be 97/3 when L_1 was used as ligand and 80/20 when L_3 was used as ligand. The mixture was purified by flash column chromatography on silica gel (hexanes/ethylacetate 10:1) to give the title compound (0.19 g, 77%) when L_1 was used as ligand and (0.18 g, 72%) when L_3 was used as ligand. HPLC analysis indicated that the enantiomeric excess of the product was 94.5% when L_1 was used as ligand and 91% when L_3 was used as ligand. [Diacel CHIRALCEL OJ-H (0.46 cm x 25 cm); hexanes/2-propanol = 97/3; flow rate = 0.5 mL/min; detection wavelength = 220 nm; TR = 23.3 (minor), 24.6 (major) min]. 1H NMR (500.13 MHz, CDCl$_3$) δ 7.25-7.20 (m, 2H), 7.15-7.12 (m, 3H), 5.92 (ddd, J = 17.6, 9.5, 8.2 Hz, 1H), 5.04 (d, J = 17.0 Hz, 1H), 5.00 (d, J = 10.3 Hz, 1H), 4.03 (dd, J = 10.9, 8.3 Hz, 1H), 3.79 (d, J = 11.0, 1H), 3.65 (s, 3H), 3.39 (s, 3H). 13C NMR (125.7 MHz, C$_6$D$_6$) δ 168.57 (s), 168.19 (s), 140.58 (s), 138.23 (s), 129.02 (s), 128.32 (s), 127.52 (s), 116.98 (s), 57.75 (s), 52.92 (s), 52.74 (s), 49.94 (s).
Figure S2. 1H NMR spectra of Benzyl-(1-vinyl-but-2-enyl)-amine.

Figure S3. 13C NMR spectra of Benzyl-(1-vinyl-but-2-enyl)-amine.
References

