Supporting Information

Revisiting Nucleophilic Substitution Reactions: Microwave-assisted Synthesis of Azides, Thiocyanates and Sulfones in Aqueous Medium

Yuhong Ju, † Dalip Kumar † and Rajender S. Varma $^{\dagger}*$

[†]Clean Processes Branch, Sustainable Technology Division, National Risk Management Research Laboratory, U. S. Environmental Protection Agency, 26 W. Martin Luther King Dr., MS 443, Cincinnati, Ohio 45268, USA.

[‡] Chemistry Group, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.

Fax: 513-569-7677; Tel: 513-487-2701; E-mail: varma.rajender@epa.gov

Contents

S4	Figure 1. Typical MW reaction condition profile
S4	NMR characterization of compound 1a
S5	NMR characterization of compounds 1b, 1c, 1d
S 6	NMR characterization of compounds 1e, 1f, 1g, 1h
S7	NMR characterization of compounds 1i, 1j
S 8	NMR characterization of compounds 1j, 1k. 1l, 2a
S 9	NMR characterization of compounds 2b, 2c, 2d, 2e,
S 10	NMR characterization of compounds 2f, 3a, 3b
S 11	NMR characterization of compounds 3c, 3d, 3e
S12	NMR characterization of compounds 3f, 3g, 3h
S13	NMR characterization of compound 3h
S14	NMR spectrum of compounds 1a-1l, 2a-2f, 3a-3h
S40	References

Experimental Procedures

S2

Experimental procedures:

General

All starting alkylhalides, sodium azide, potassium thiocyanate, sodium sulfinates were used as obtained. 1,3-Propane-diol-ditosylate, and 1,4-butane-diol-ditosylate were prepared according to literature. The crude products were identified by GC/MS qualitative analysis using a GC system with a Mass selective detector or FT-IR data of the characteristic azido functionality. The identities were further confirmed by H and H and T NMR spectra that were recorded in chloroform-*d* (CDCl₃) with TMS as internal reference using a 300 MHz NMR spectrometer. All melting points of synthesized sulfones were uncorrected.

Typical representative procedures

Synthesis of azides: 1,4-dibromobutane (1 mmol, 0.215 g), sodium azide (2.5 mmol, 0.163 g) in water (2 mL) were placed in a 10 mL crimp-sealed thick-walled glass tube equipped with a pressure sensor and a magnetic stirrer. The reaction tube was placed inside the cavity of a CEM Discover focused microwave synthesis system, operated at 120 ± 5 °C (temperature monitored by a built-in infrared sensor), power 70 - 100 Watt and pressure 60 - 100 psi for 30 minutes. After completion of the reaction, diethyl ether was added to extract the alkyl azide. GC/MS analysis indicated the disappearance of alkyl halides, FT-IR spectrum of crude product was obtained using a FT-IR spectrometer and the formation of alkyl azide was confirmed by the characteristic IR adsorption around 2100 cm⁻¹. Removal of the solvent under reduced pressure (rotary evaporator) afforded the product, 1,4-diazido-butane (0.125 g) in 89% yield. ¹H and ¹³C NMR were recorded in chloroform-d (CDCl₃) with TMS as internal reference using a 300 MHz NMR spectrometer, and were consistent with literature.

Synthesis of thiocyanates: benzylchloride (1 mmol, 0.127 g), potassium thiocyanate (1.3 mmol, 0.126 g) in water (2 mL) were placed in a 10 mL crimp-sealed thick-walled glass tube equipped with a pressure sensor and a magnetic stirrer. The reaction tube was placed inside the cavity of a CEM Discover focused microwave synthesis system, operated at 110 ± 5 °C (temperature monitored by a built-in infrared sensor), power 70 - 100 Watt and pressure 60 – 80 psi for 20 minutes. After completion of the reaction, diethyl ether was added to extract the alkyl thiocyanate. GC/MS analysis indicated the disappearance of alkyl halides, FT-IR spectrum of crude product was obtained using a FT-IR spectrometer and the formation of alkylthiocyanate was confirmed by the characteristic IR adsorption around 2150-2160 cm⁻¹. Removal of the solvent under reduced pressure (rotary evaporator) afforded the crude product, thiocyanatomethyl-benzene (0.142 g) in 95% yield; no flash column chromatograph was needed to purify the product. ¹H and ¹³C NMR were recorded in chloroform-d (CDCl₃) with TMS as internal reference using a 300 MHz NMR spectrometer, and were consistent with literature.

Synthesis of sulfones: benzylbromide (1 mmol, 0.171 g), sodium p-toluenesulfinate hydrate (1.3 mmol, 0.252 g) in water (2 mL) were placed in a 10 mL crimp-sealed thick-walled glass tube equipped with a pressure sensor and a magnetic stirrer. The reaction tube was placed inside the cavity of a CEM Discover focused microwave synthesis system, operated at 120 ± 5 °C (temperature monitored by a built-in infrared sensor), power 70 - 100 Watt and pressure 40 - 60 psi for 30 minutes. After completion of the reaction, diethyl ether was added to extract the alkyl thiocyanate. GC/MS analysis indicated the disappearance of alkyl halides. Removal of the solvent under reduced pressure (rotary evaporator) and flash column chromatography using hexane/ethyl acetate (75/25) as eluent afforded benzyl p-toluene sulfone (0.216 g) in 88% yield.

¹H and ¹³C NMR were recorded in chloroform-*d* (CDCl₃) with TMS as internal reference using a 300 MHz NMR spectrometer, and were consistent with literature.

The typical microwave-assisted reaction conditions, in terms of temperature (°C), pressure (psi), microwave power (W) and reaction time are shown in **Figure 1**.

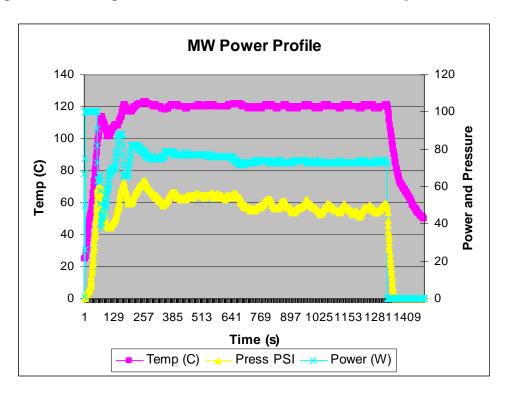


Figure 1. Typical MW reaction condition profile

The NMR spectroscopic data of synthesized compounds is as follows:

$$N_3$$

Azidomethyl-benzene (1a).² The reaction of benzylbromide (1.0 mmol, 0.171 g) and sodium azide (1.3 mmol, 0.085 g) was carried out as described earlier and produced 0.126 g (95%) of azidomethyl-benzene. ¹H NMR (300 MHz, CDCl₃/TMS) δ ppm 7.37- 7.30 (m, 5H), 4.30 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 135.4, 128.9, 128.3, 128.2, 54.8.

$$\backslash \backslash \backslash \backslash N_3$$

1-Azido-octane (**1b**). The reaction of 1-bromo-octane (1.0 mmol, 0.193 g) and sodium azide (1.3 mmol, 0.085 g) was carried out as described earlier and produced 0.135 g (89%) of 1-azido-octane (GC yield; crude product NMR showed 85 % of azidooctane with 15% 1-bromobutane mixture). H NMR (300 MHz, CDCl₃/TMS) δ ppm 3.34 (t, 2H, J = 6.9 Hz), 1.79 (m, 2H), 1.23 (m, 10H), 0.82 (t, 3H, J = 6.9 Hz); 13 C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 51.2 (-CH₂N₃).

$$N_3$$

1,2-Bis-azidomethyl-benzene (**1c**). The reaction of 1,2-bischloromethyl-benzene (1.0 mmol, 0.175 g) and sodium azide (2.5 mmol, 0.164 g) was carried out as described earlier and produced 0.180 g (95%) of 1,2-bis-azidomethyl-benzene as a colorless liquid. H NMR (300 MHz, CDCl₃/TMS) δ ppm 7.36 (s, 4H), 4.41 (s, 4H); CNMR (75.5 MHz, CDCl₃/TMS) δ ppm 133.8, 130.1, 130.0, 128.9, 52.1.

Azido-phenylacetic acid ethyl ester (1d).⁵ The reaction of α-bromo-phenylacetic acid ethyl ester (1.0 mmol, 0.243 g) and sodium azide (1.3 mmol, 0.085 g) was carried out as described earlier and produced 0.161 g (85%) of azido-phenylacetic acid ethyl ester. ¹H NMR (300 MHz CDCl₃/TMS) δ ppm 7.40 (m, 5H), 4.94 (s, 1H), 4.26 (q, 2H, J = 7.2 Hz), 1.26 (t, 3H, J = 7.5 Hz); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 169.1, 134.0, 129.2, 129.1, 127.6, 65.4, 62.1, 14.0.

Azido-acetic acid ethyl ester (1e). The reaction of chloroacetic acid ethyl ester (1.0 mmol, 0.126 g) and sodium azide (1.3 mmol, 0.085 g) was carried out as described earlier and produced

0.068 g (53%) of azido-acetic acid ethyl ester. 1 H NMR (300 MHz CDCl₃/TMS with pentane and hexane) δ ppm 4.26 (q, 2H, J = 7.2 Hz), 3.86 (s, 2H), 1.30 (m, mixed with protons from hexane and pentane); 13 C NMR (75.5 MHz CDCl₃/TMS) δ ppm 168.2, 61.7, 50.3, 13.9.

$$N_3$$

2-Azido-3-methyl-butyric acid (**1f**). The reaction of 2-bromo-3-methyl-butyric acid (1.0 mmol, 0.180 g) and sodium azide (1.3 mmol, 0.085 g) was carried out as described earlier and produced 0.067 g (47%) of 2-azido-3-methyl-butyric acid. ¹H NMR (300 MHz CDCl₃/TMS) δ ppm 9.19 (b, 1H), 3.72 (d, 1H, J = 6.9 Hz), 2.20 (m, 1H), 1.00 (tt, 6H, J = 7.2 Hz); ¹³C NMR (75.5 MHz CDCl₃/TMS) δ ppm 176.0, 67.9, 30.9, 19.3, 17.7.

$$N_3$$
 OH

1,3-Diazido-2-propanol (**1g**). The reaction of 1,3-dibromo-2-propanol (1.0 mmol, 0.218 g) and sodium azide (2.5 mmol, 0.164 g) was carried out as described earlier and produced 0.141 g (99%) of 1,3-diazido-2-propanol. H NMR (300 MHz CDCl₃/TMS) δ ppm 3.92 (m, 1H), 3.39 (dd, 4H, J = 7.8 Hz), 2.98 (b, 1H); 13 C NMR (75.5 MHz CDCl₃/TMS) δ ppm 69.5, 53.8.

$$\begin{array}{c}
O\\
N-(CH_2)_3N_3\\
O
\end{array}$$

2-(3-Azidopropyl)-isoindole-1,3-dione (**1h**). The reaction of 2-(3-bromopropyl)-isoindole-1,3-dione (1.0 mmol, 0.268 g) and sodium azide (1.3 mmol, 0.085 g) was carried out as described earlier and produced 0.202 g (88%) of 2-(3-azidopropyl)-isoindole-1,3-dione. He NMR (300 MHz CDCl₃/TMS) δ ppm 7.78 (m, 2H), 7.68 (m, 2H), 3.72 (t, 2H, J = 6.9 Hz), 3.33

(t, 2H, J = 6.9 Hz), 1.90 (tt, 2H, J = 6.9 Hz); ¹³C NMR (75.5 MHz CDCl₃/TMS) δ ppm 168.0, 133.9, 131.8, 123.1, 48.9, 35.2, 27.8.

$$N_3$$

1,4-Bisazido-butane (**1i**). The reaction of 1,4-ditosyl-butane (1.0 mmol, 0.398 g) and sodium azide (2.5 mmol, 0.163 g) was carried out as described earlier and produced 0.108 g (77%) of **1**,4-bisazido-butane. H NMR (300 MHz CDCl₃/TMS) δ ppm 3.28 (t, 4H, J = 8.4 Hz), 1.63 (p, 4H, J = 6.0 Hz); CNMR (75.5 MHz CDCl₃/TMS) δ ppm 50.8, 26.0.

$$N_3$$

1,4-Bisazido-butane (**1i).** The reaction of 1,4-dibromo-butane (1.0 mmol, 0.216 g) and sodium azide (2.5 mmol, 0.164 g) was carried out as described earlier and produced 0.125 g (89%) of 1,4-bisazido-butane. ¹H NMR (300 MHz CDCl₃/TMS) δ ppm 3.28 (t, 4H, J = 8.4 Hz), 1.63 (p, 4H, J = 6.0 Hz); ¹³C NMR (75.5 MHz CDCl₃/TMS) δ ppm 50.8, 26.0.

$$N_3$$
 N_3

1,3-Bisazido-propane (**1j).** ¹¹ The reaction of 1,3-ditosyl-propane (1.0 mmol, 0.384 g) and sodium azide (2.5 mmol, 0.164 g) was carried out as described earlier and produced 0.076 g (60%) of 1,3-bisazido-propane. ¹H NMR (300 MHz CDCl₃/TMS) δ ppm 3.42 (t, 4H, J = 6.2 Hz), 1.83 (p, 2H, J = 6.6 Hz); ¹³C NMR (75.5 MHz CDCl₃/TMS) δ ppm 48.5, 28.3.

$$N_3$$
 N_3

1,3-Bisazido-propane (**1j**). ¹¹ The reaction of 1,3-dibromo-propane (1.0 mmol, 0.202 g) and sodium azide (2.5 mmol, 0.164 g) was carried out as described earlier and produced 0.098 g (78%) of 1,3-bisazido-propane. ¹H NMR (300 MHz CDCl₃/TMS) δ ppm 3.42 (t, 4H, J = 6.2 Hz), 1.83 (p, 2H, J = 6.6 Hz); ¹³C NMR (75.5 MHz CDCl₃/TMS) δ ppm 48.5, 28.3.

$$N_3$$
 N_3

1-4-Bisazido-pentane (**1k**). ¹² The reaction of 1,4-dibrmo-pentane (1.0 mmol, 0.229 g) and sodium azide (2.5 mmol, 0.163 g) was carried out as described earlier and produced 0.126 g (82%) of 1-azido-4-chloro-butane. ¹H NMR (300 MHz CDCl₃/TMS) δ ppm 3.49 (m, 1H), 3.29 (t, 2H, J = 6.9 Hz), 1.62 (m, 4H), 1.19 (d, 3H, J = 6.4 Hz); ¹³C NMR (75.5 MHz CDCl₃/TMS) δ ppm 57.4, 52.1, 33.3, 25.5, 19.4.

$$N_3$$
 Et

4-Azido-butyric acid ethyl ester (1l). ¹³ The reaction of 4-bromo-butyric acid ethyl ester (1.0 mmol, 0.195 g) and sodium azide (1.3 mmol, 0.085 g) was carried out as described earlier and produced 0.137 g (87%) of 1-azido-butyric acid ethyl ester. ¹H NMR (300 MHz CDCl₃/TMS) δ ppm 4.09 (q, 2H, J = 6.6 Hz), 3.33 (t, 2H, J = 7.8 Hz), 2.06 (m, 2H), 1.69 (m, 4H); ¹³C NMR (75.5 MHz CDCl₃/TMS) δ ppm 171.0, 63.7, 51.0, 25.9, 25.5, 20.9.

1-Thiocyanato-octane (**2a**). ¹⁴ The reaction of 1-bromo-octane (1.0 mmol, 0.193 g) and potassium thiocyanate (1.3 mmol, 0.126 g) was carried out as described earlier and produced 0.147 g (86%) of 1-thiocyanato-octane. ¹H NMR (300 MHz CDCl₃/TMS) δ ppm 2.95 (t, 2H, J = 7.2 Hz), 1.81 (dd, 2H, J = 7.5, 7.2 Hz), 1.42 (m, 2H), 1.29 (m, 8H), 0.89 (t, 3H, J = 6.9 Hz); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 112.2, 33.9, 31.5, 29.7, 28.9, 28.7,27.3, 22.4, 13.9.

2-(3-Thiocyanatopropyl)-isoindole-1,3-dione (2b). ¹⁵ The reaction of 2-(3-bromopropyl)-isoindole-1,3-dione (1.0 mmol, 0.268 g) and potassium thiocyanate (1.3 mmol, 0.126 g) was carried out as described earlier and produced 0.222 g (90%) of 2-(3-thiocyanatopropyl)-isoindole-1,3-dione, m.p. 97-98 °C (lit. 140-141 °C). ¹H NMR (300 MHz CDCl₃/TMS) δ ppm 7.85 (dd, 2H, J = 6.4, 3.0 Hz), 7.74 (m, 2H), 3.87 (t, 2H, J = 6.3 Hz), 3.008 (t, 2H, J = 7.2 Hz), 2.23 (m, 2H); ¹³C NMR (75.5 MHz CDCl₃/TMS) δ ppm 168.2, 134.2, 131.8, 123.4, 111.8, 35.2, 31.5, 29.2.

1,4-Bisthiocyanato-butane (**2c**). The reaction of 1,4-ditosyl-butane (1.0 mmol, 0.398 g) and potassium thiocyanate (2.5 mmol, 0.243 g) was carried out as described earlier and produced 0.134 g (78%) of 1,4-bisthiocyanato-butane. H NMR (300 MHz CDCl₃/TMS) δ ppm 3.02 (t, 4H, J = 8.2 Hz), 2.02 (m, 4H); CNMR (75.5 MHz CDCl₃/TMS) δ ppm 111.5, 32.8, 27.6.

Thiothiocyanatomethyl-benzene (2d).¹⁷ The reaction of benzylchloride (1.0 mmol, 0.127 g) and potassium thiocyanate (1.3 mmol, 0.126 g) was carried out as described earlier and produced 0.142 g (95%) of thiocyanatomethyl-benzene, m.p. 43-44 °C. ¹H NMR (300 MHz, CDCl₃/TMS) δ ppm 7.27 (m, 5H), 4.03 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 134.3, 129.0, 128.8, 128.7, 111.8, 38.2.

1,2-Bis-thiocyanatomethyl-benzene (**2e**). ¹⁸ The reaction of 1,2-bischloromethyl-benzene (1.0 mmol, 0.175 g) and potassium thiocyanate (2.5 mmol, 0.243 g) was carried out as described earlier and produced 0.201 g (91%) of 1,2-bis-thiocyanatomethyl-benzene. ¹H NMR (300 MHz,

CDCl₃/TMS) δ ppm 7.40 (s, 4H), 4.27 (s, 4H); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 132.7, 131.4, 129.8, 111.2, 34.9.

3-Thiothiocyanato-propionitrile (**2f**). ¹⁹ The reaction of 3-bromopropionitrilr (1.0 mmol, 0.134 g) and potassium thiocyanate (1.3 mmol, 0.126 g) was carried out as described earlier and produced 0.095 g (85%) of thiocyanato-propionitrile. ¹H NMR (300 MHz, CDCl₃/TMS) δ ppm 3.15 (t, 2H, J = 6.9 Hz), 2.88 (t, 2H, J = 6.9 Hz); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 116.1, 110.1, 29.1, 19.0.

4-CH₃C₆H₄SO₂C₈H₁₇

1-Methyl-4-(octane-1-sulfonyl) benzene (**3a**).²⁰ The reaction of 1-bromooctane (1 mmol, 0.193 g) and sodium p-toluenesulfinate hydrate (1.3 mmol, 0.254 g) in water (2 mL) was carried out as described earlier and produced 0.217 g (81%) of 1-methyl-4-(octane-1-sulfonyl) benzene, m.p. 33-34 °C (lit. 34.4-34.5 °C). ¹H NMR (300 MHz, CDCl₃/TMS) δ ppm 7.78 (dd, 2H, J = 6.6, 1.5 Hz), 7.34 (d, 2 H, J = 7.8 Hz), 3.07 (m, 2H), 2.44 (s, 3H), 1.68 (m, 2H), 1.26 (m, 10H), 0.86 (t, 3H, J = 6.9 Hz); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 144.3, 136.1, 129.6, 127.8, 56.1, 31.4, 28.7, 28.6, 28.0, 22.5, 22.3, 21.3, 13.8.

1-Methyl-4-(benzylsulfonyl) benzene (3b). ²¹ The reaction of benzylbromide (1 mmol, 0.171 g) and sodium p-toluenesulfinate hydrate (1.3 mmol, 0.254 g) in water (2 mL) was carried out as described earlier and produced 0.217 g (88%) of 1-methyl-4-(benzylsulfonyl) benzene, m.p. 140-141 °C (lit. 140-141 °C). ¹H NMR (300 MHz, CDCl₃/TMS) δ ppm 7.41 (s, 2H), 7.18 (m, 5H),

7.01 (s, 2H), 4.21 (s, 2H), 2.33 (s, 3H); 13 C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 144.6, 135.0, 130.8, 129.4, 128.61, 128.57, 128.48, 128.3, 62.9, 21.6.

$$H_3CC_6H_4O_2S$$
 $SO_2C_6H_4CH_3$

1,4-Bistoluenesulfonyl-butane (**3c**). The reaction of 1,4-dibromobutane (1 mmol, 0.215 g) and sodium *p*-toluenesulfinate hydrate (2.5 mmol, 0.495 g) in water (2 mL) was carried out as described earlier and produced 0.257 g (70%) of 1,4-bistoluenesulfonyl-butane, m.p. 148-149 °C (lit. 149-150 °C). H NMR (300 MHz, CDCl₃/TMS) δ ppm 7.73 (d, 4H, J = 8.1 Hz), 7.34 (d, 4H, J = 7.8 Hz), 3.05 (m, 4H), 2.43 (s, 6H), 1.78 (m, 4H); 13 C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 144.7, 135.7, 129.8, 127.8, 55.3, 21.4.

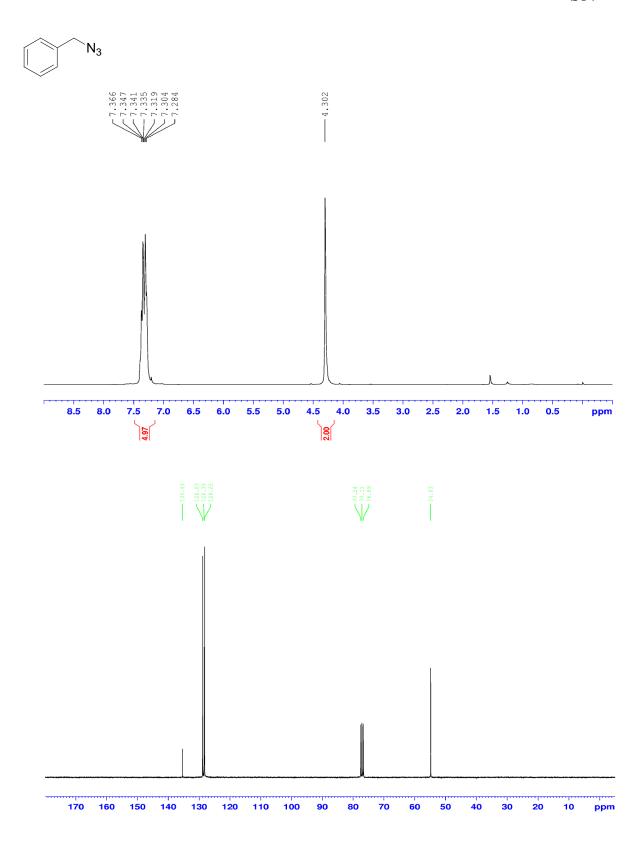
$$O$$
 $SO_2C_6H_5$

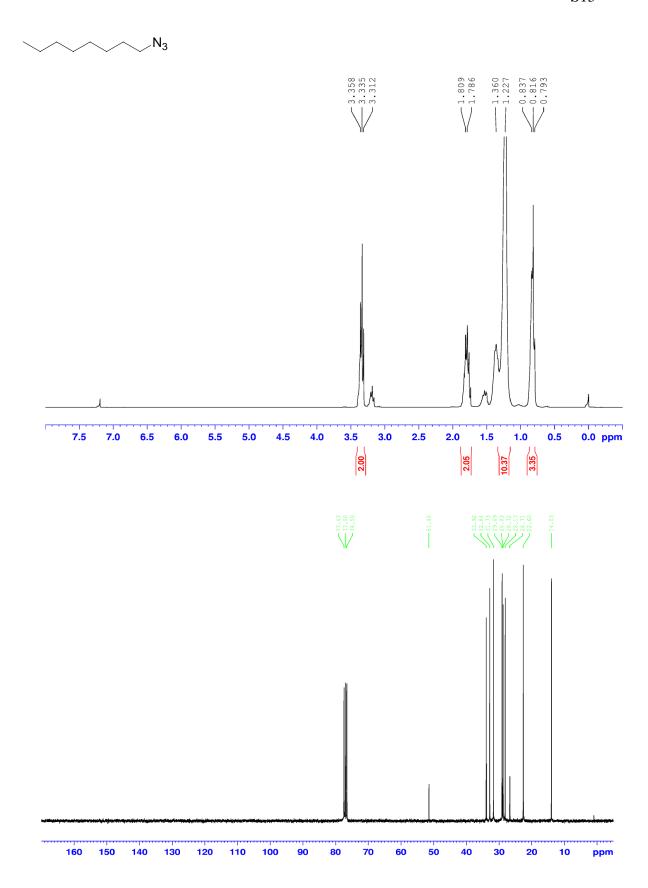
2-Bezenesulfonyl-1-indanone (**3d**). ²³ The reaction of 2-bromoindanone (1 mmol, 0.211 g) and sodium benznenesulfinate (1.3 mmol, 0.213 g) in water (2 mL) was carried out as described earlier and produced 0.248 g (91%) of 2-bezenesulfonyl-1-indanone, m.p. 145-146 °C (lit. 147-148 °C). ¹H NMR (300 MHz, CDCl₃/TMS) δ ppm 7.92 (m, 2H), 7.66 (t, 3H, J = 7.5 Hz), 7.58-7.38 (m, 4H), 4.29 (t, 1H, J = 2.4 Hz), 3.82 (d, 1H, J = 18.0 Hz), 3.55 (dd, 1H, J = 17.7 Hz); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 194.4, 151.8, 137.5, 135.9, 135.7, 134.2, 129.2, 129.0, 128.2, 126.4, 124.8, 68.6, 28.0.

$$\mathsf{H_3CC_6H_4O_2S} \\ \begin{array}{c} \mathsf{SO_2C_6H_4CH_3} \\ \end{array}$$

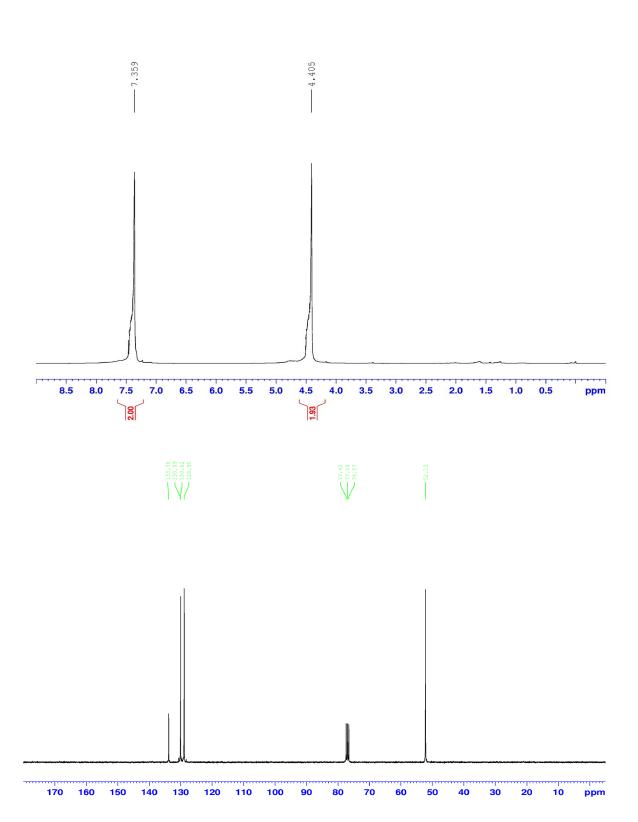
1,4-Bis-(*p***-toluenesulfonyl)-2-butene** (**3e**). ²⁴ The reaction of 1,4-dibromo-2-butene (1 mmol, 0.213 g) and sodium *p*-toluenesulfinate hydrate (2.5 mmol, 0.495 g) in water (2 mL) was carried out as described earlier and produced 0.310 g (85%) of 1,4-bis(*p*-toluenesulfonyl)-2-butene, m.p. 103-104 °C (lit. 198-200 °C). ¹H NMR (300 MHz, CDCl₃/TMS) δ ppm 7.70 (d, 4H, J = 7.8 Hz),

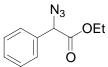
7.34 (d, 4H, J = 7.8 Hz), 5.59 (d, 2H, J = 4.2, 1.8 Hz), 3.76 (dd, 4H, J = 4.5, 1.8 Hz), 2.45 (s, 6H); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 145.0, 135.4, 129.8, 128.3, 126.3, 59.6, 21.6.

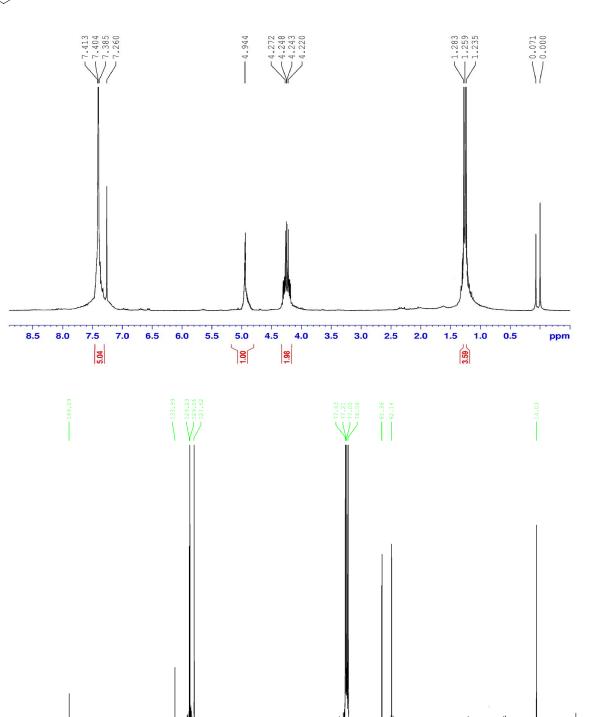

2-Phenyl-(toluene-4-sulfonyl)-acetic acid ethyl ester (3f). 25 The reaction of 2-

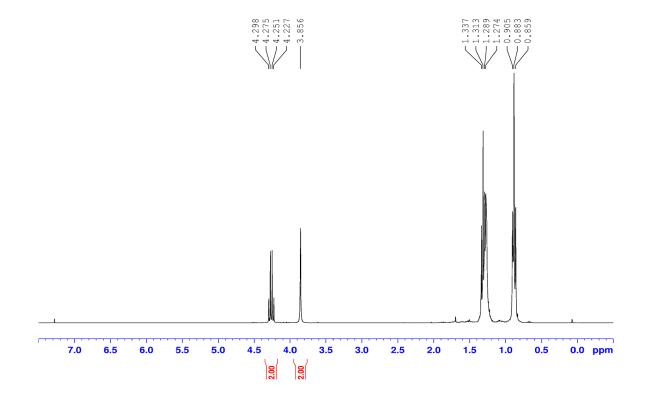

bromophenylacetic acid ethyl ester (1 mmol, 0.243 g) and sodium p-toluenesulfinate hydrate (1.3 mmol, 0.252 g) in water (2 mL) was carried out as described earlier and produced 0.271 g (85%) of 2-phenyl-(toluene-4-sulfonyl)-acetic acid ethyl ester, m.p. 112-113 °C (lit. 112-113 °C). 1 H NMR (300 MHz, CDCl₃/TMS) δ ppm 7.40 (d, 2H, J = 8.1 Hz), 7.28-7.18 (m, 5H), 7.13 (d, 2H, J = 8.1 Hz), 5.00 (s, 1H), 4.13 (q, 2H, J = 10.2 Hz) 2.33 (s, 3H), 1.15 (t, 3H, J = 7.2 Hz); 13 C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 164.7, 145.1, 133.4, 130.1, 129.8, 129.7, 129.4, 129.0, 128.3, 127.8, 75.1, 62.3, 21.5, 13.7.

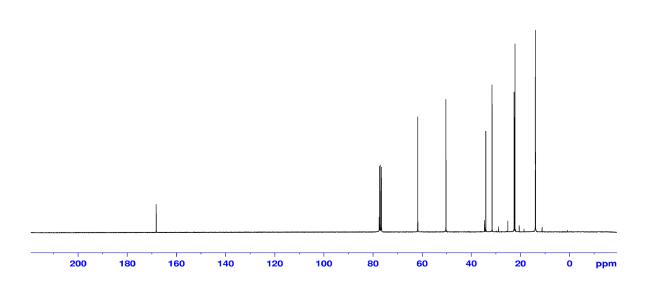
Methanesulfonylmethyl-benzene (**3g**).²⁶ The reaction of benzylchloride(1 mmol, 0.127 g) and methanesulfinic acid, sodium salt (1.3 mmol, 0.133 g) in water (2 mL) was carried out as described earlier and produced 0.139 g (82%) of methanesulfonylmethyl-benzene, m.p. 125-126.5°C (lit. 126-127 °C). ¹H NMR (300 MHz, CDCl₃/TMS) δ ppm 7. 42(s, 5H), 4.26 (s, 2H), 2.76 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 130.5, 129.1, 128.3, 61.4, 39.0.

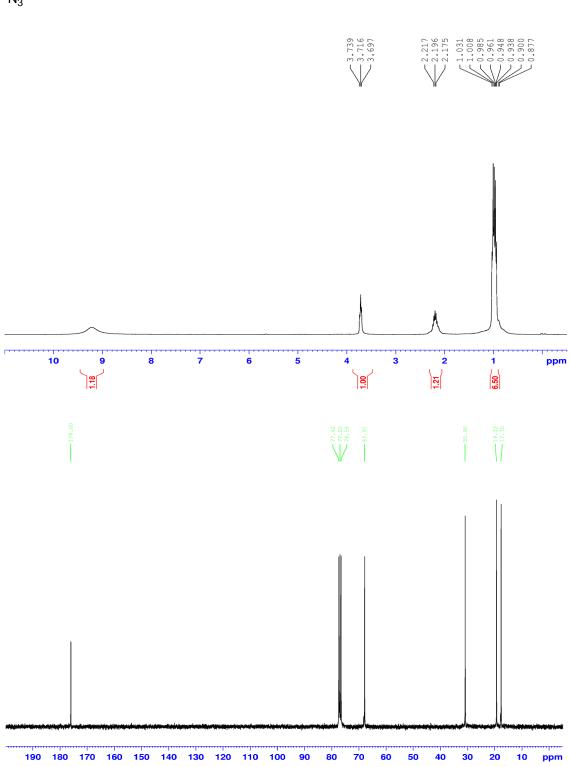

Benzylsulfonyl-benzene (**3h**).²⁷ The reaction of benzylchloride(1 mmol, 0.127 g) and sodium benznenesulfinate (1.3 mmol, 0.213 g) in water (2 mL) was carried out as described earlier and produced 0.197 g (85%) of benzylsulfonyl-benzene, m.p. 146.5-147.5 °C (lit. 151-155 °C). ¹H

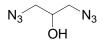

NMR (300 MHz, CDCl₃/TMS) δ ppm 7.63 (d, 3H, J = 6.6 Hz), 7.45 (d, 2H, J = 6.9 Hz), 7.31 (m, 1H), 7.27 (d, 2H, J = 5.8 Hz), 7.08 (d, 2H, J = 4.8 Hz), 4.31 (s, 2H); ¹³C NMR (75.5 MHz, CDCl₃/TMS) δ ppm 137.8, 133.6, 130.8, 128.8, 128.7, 128.6, 128.5, 128.1,62.8.

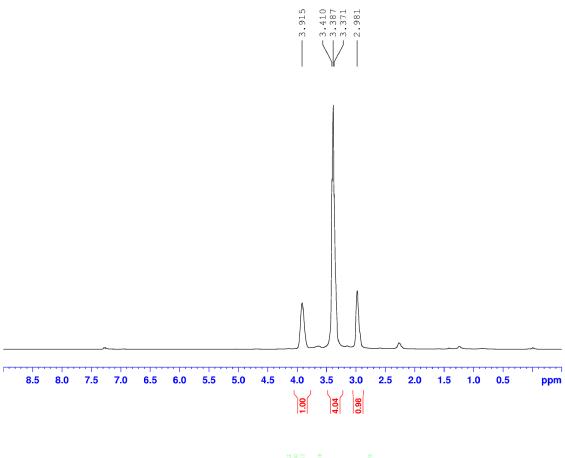


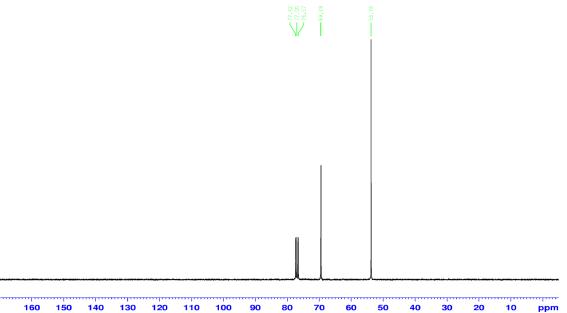


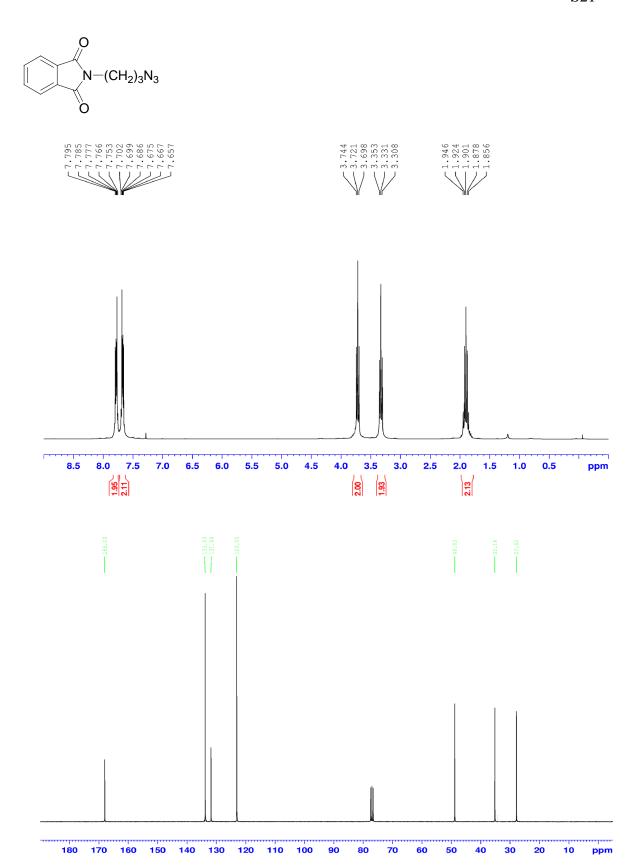



180 170 160 150 140 130 120 110 100 90 80

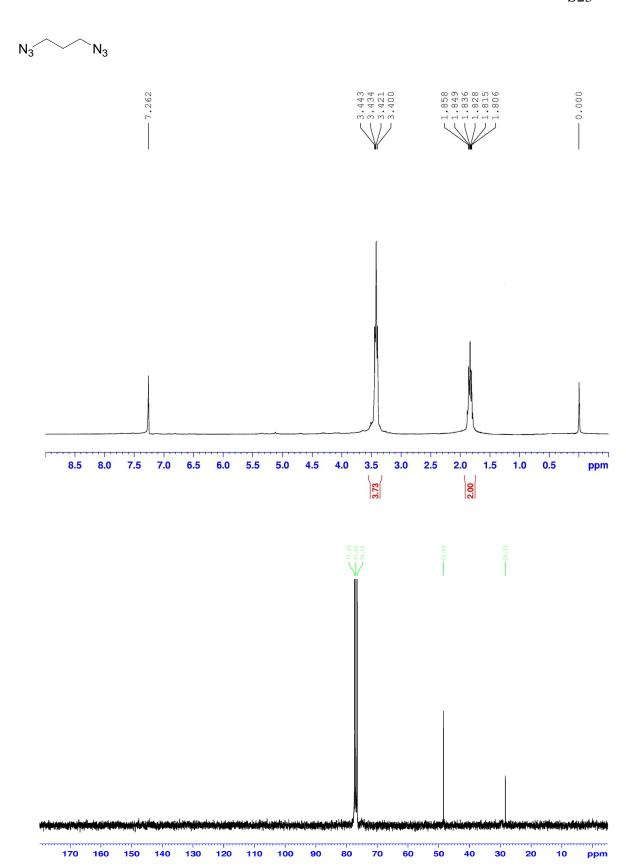


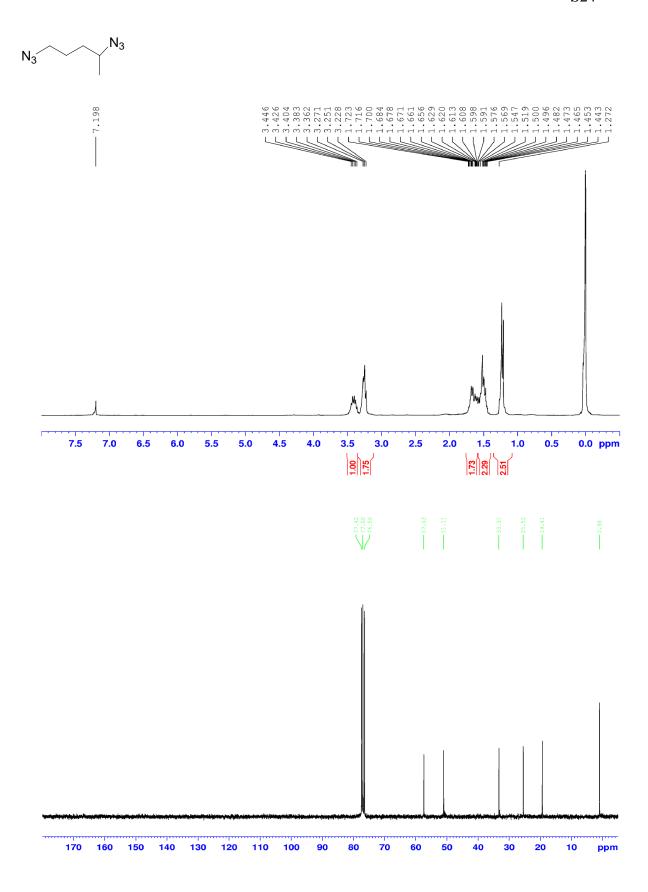


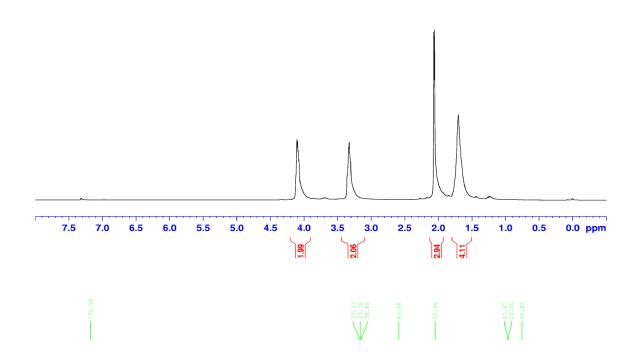


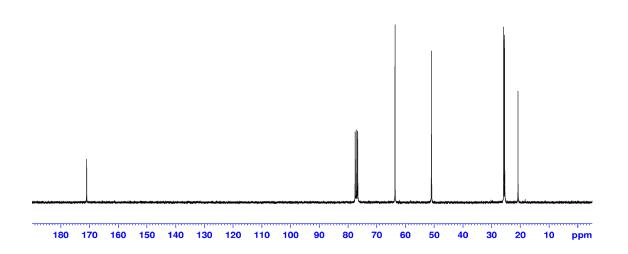


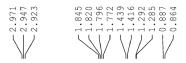


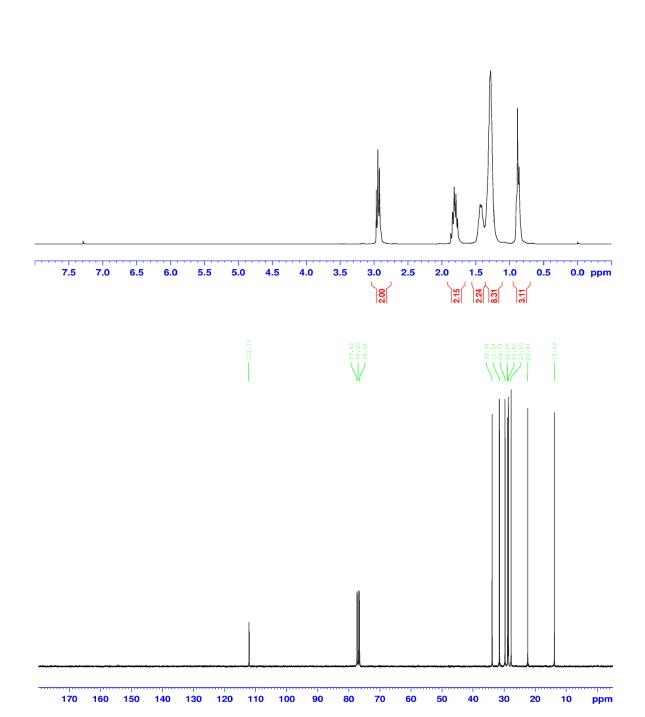


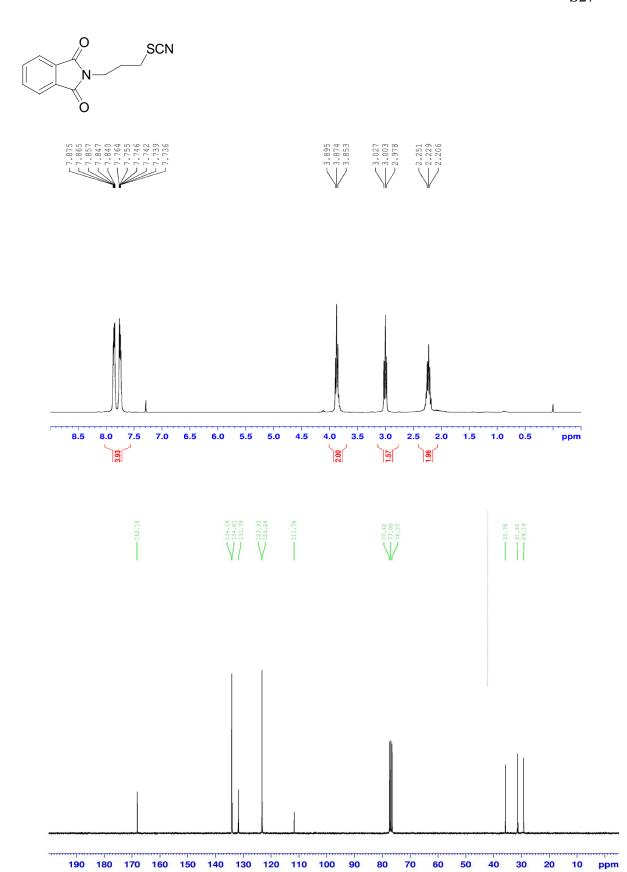


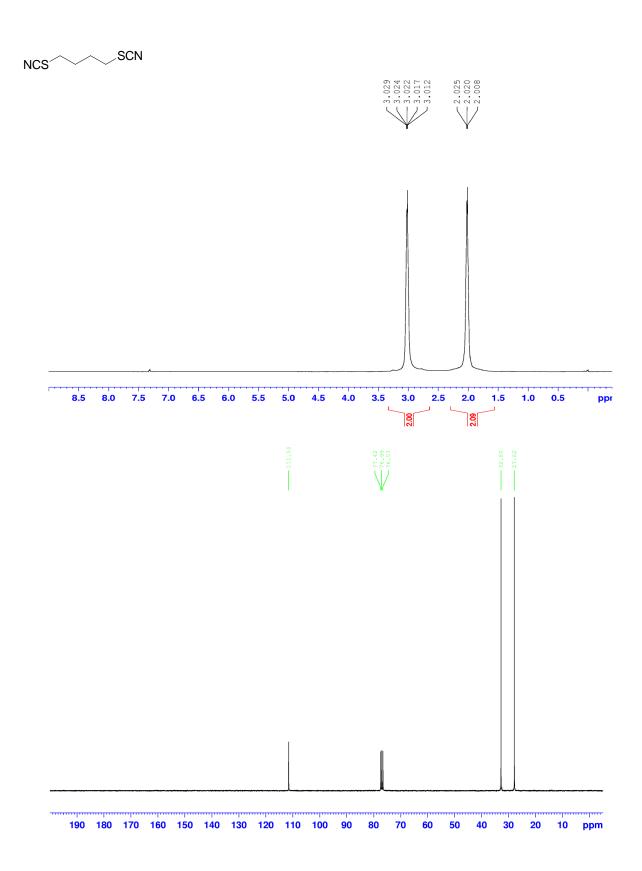


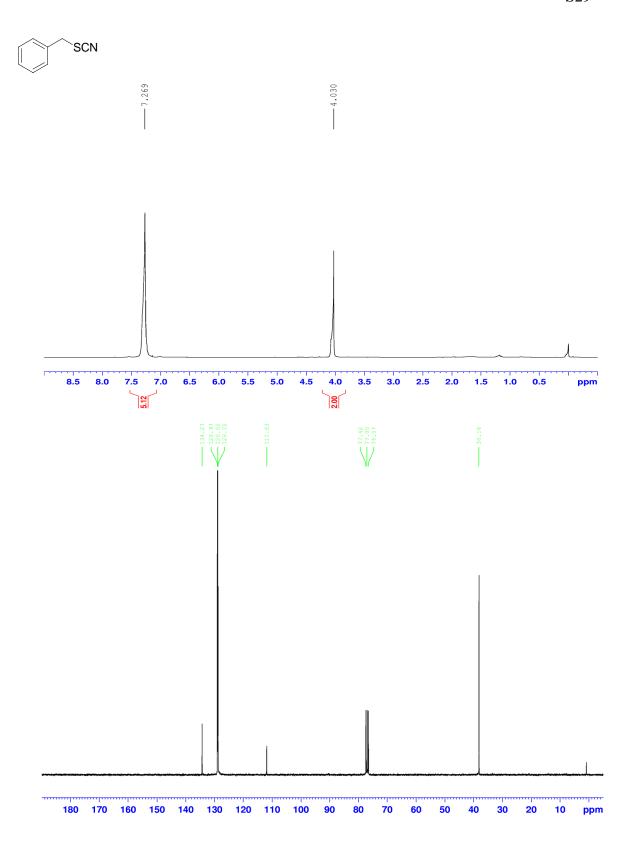


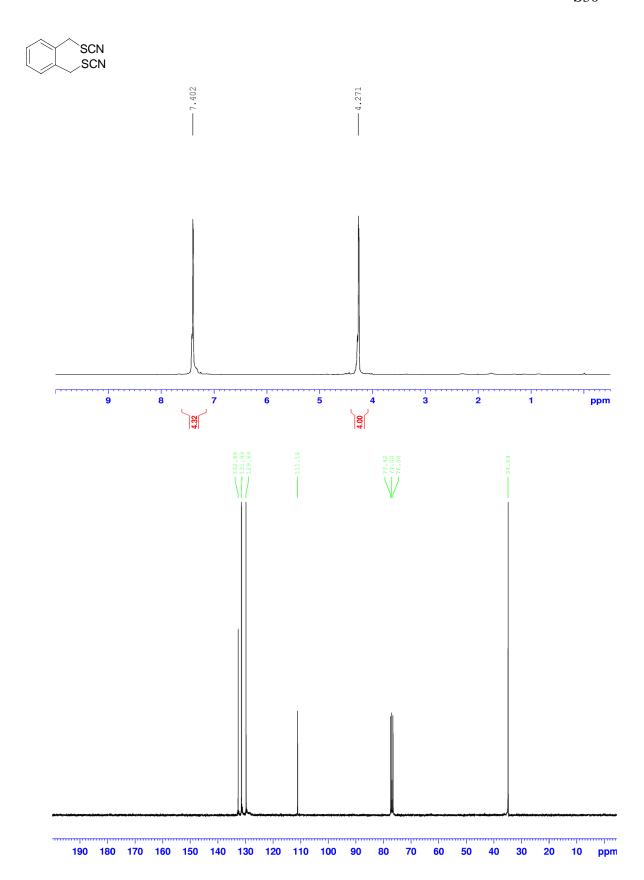


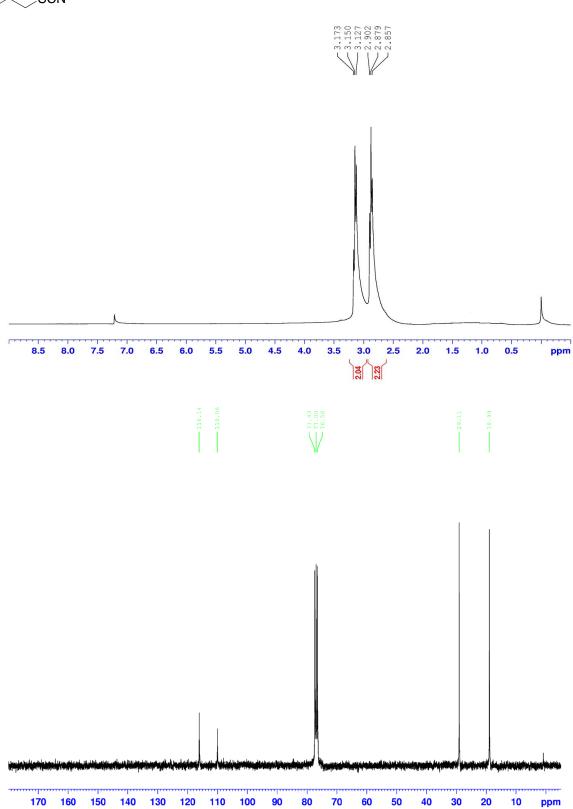


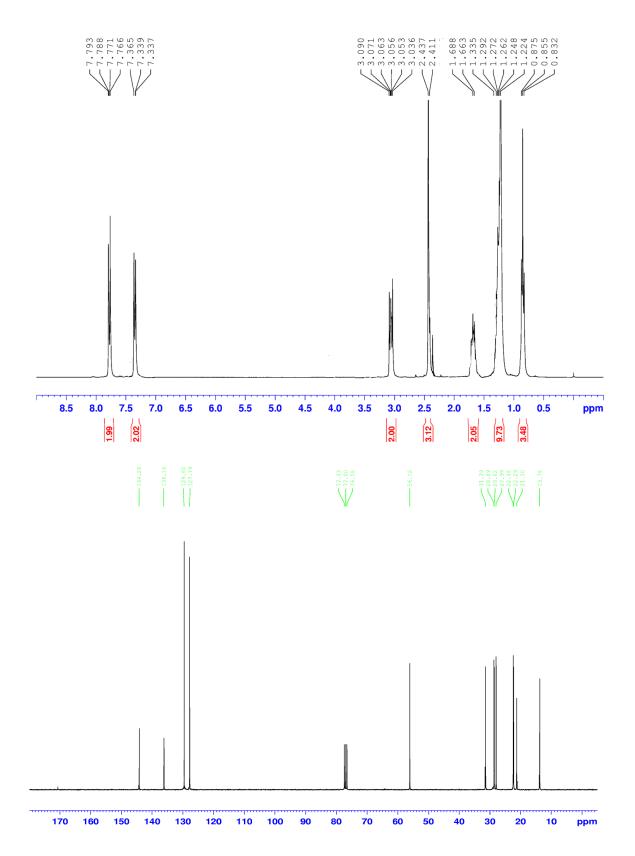


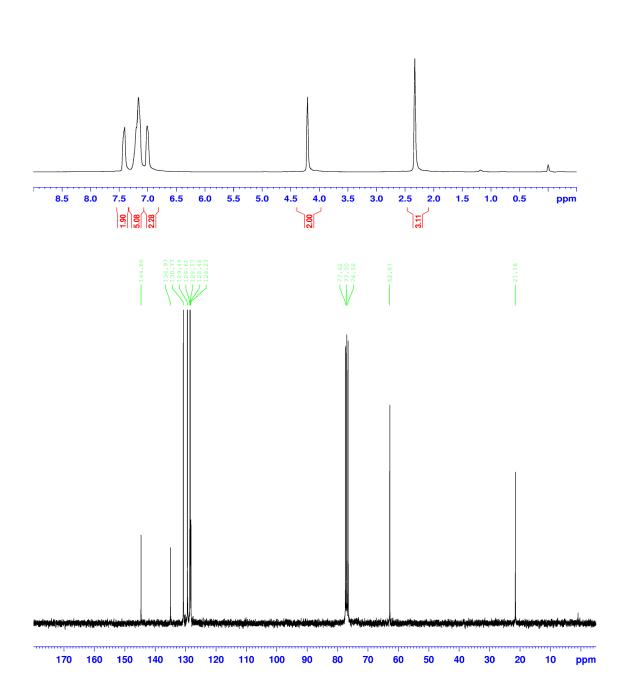


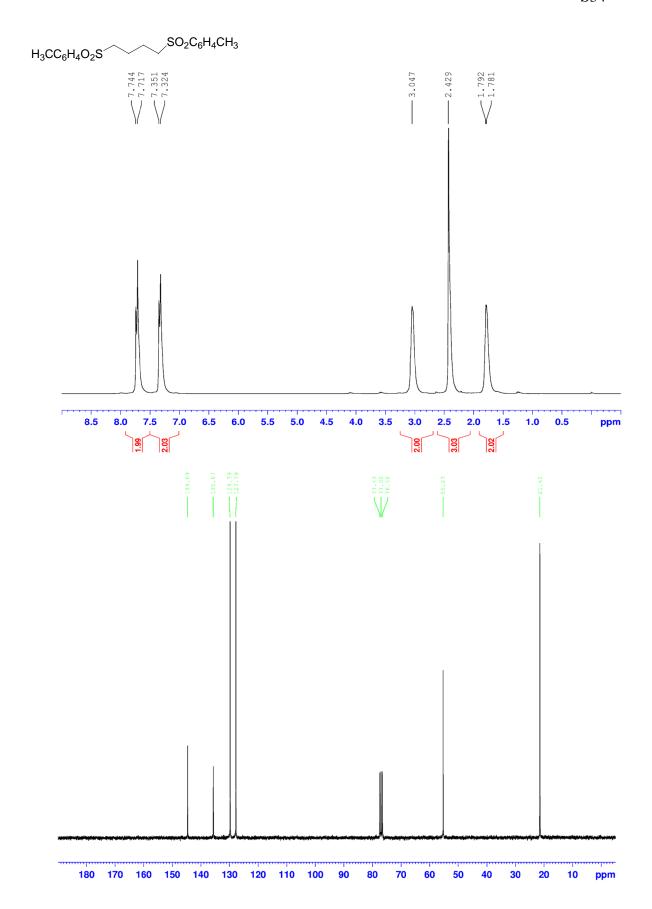

SCN

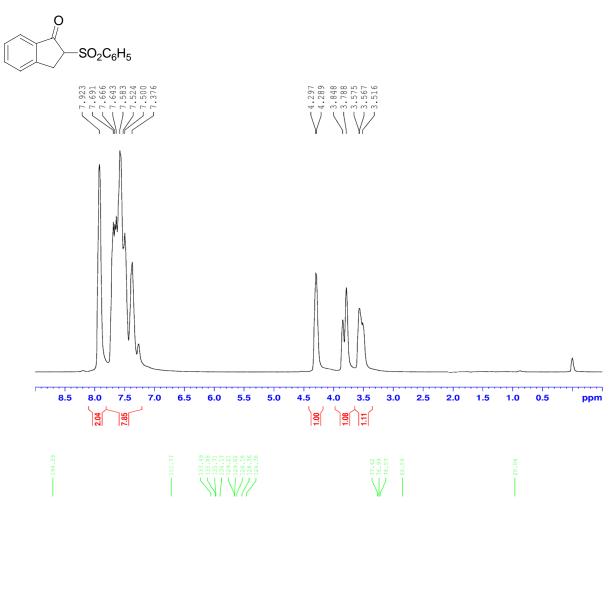


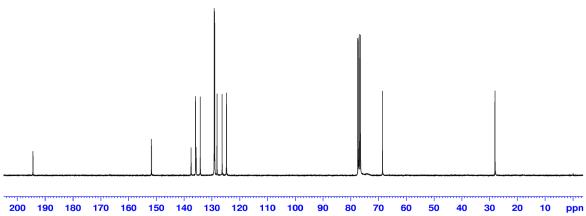


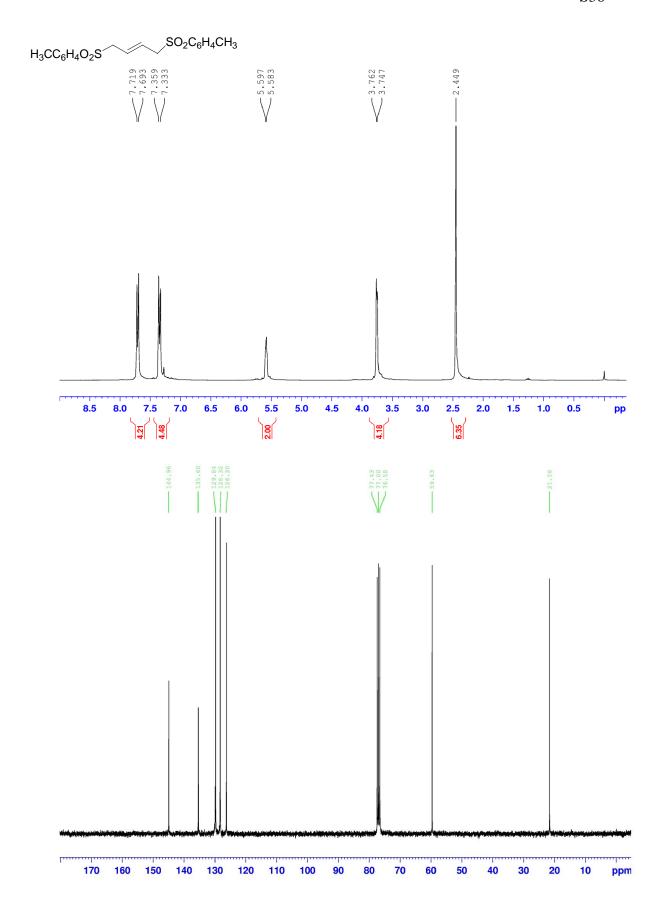


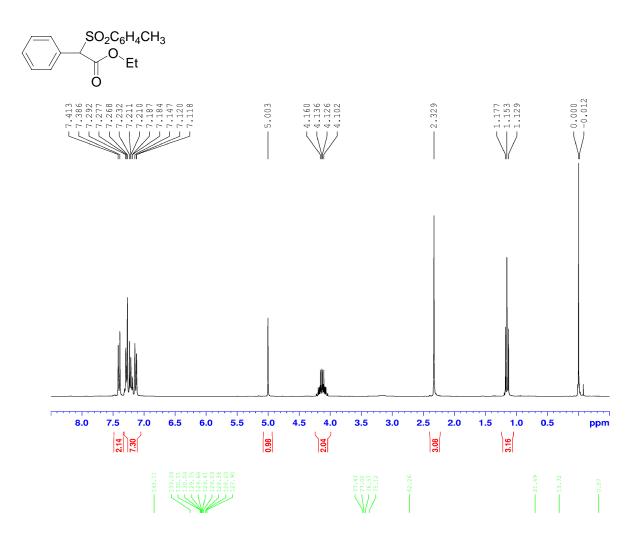


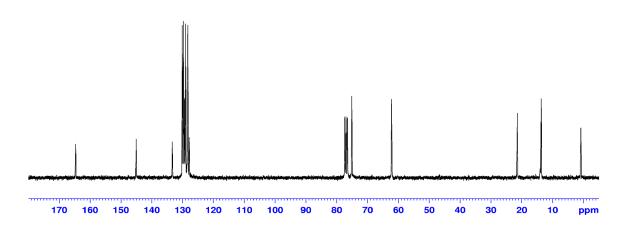


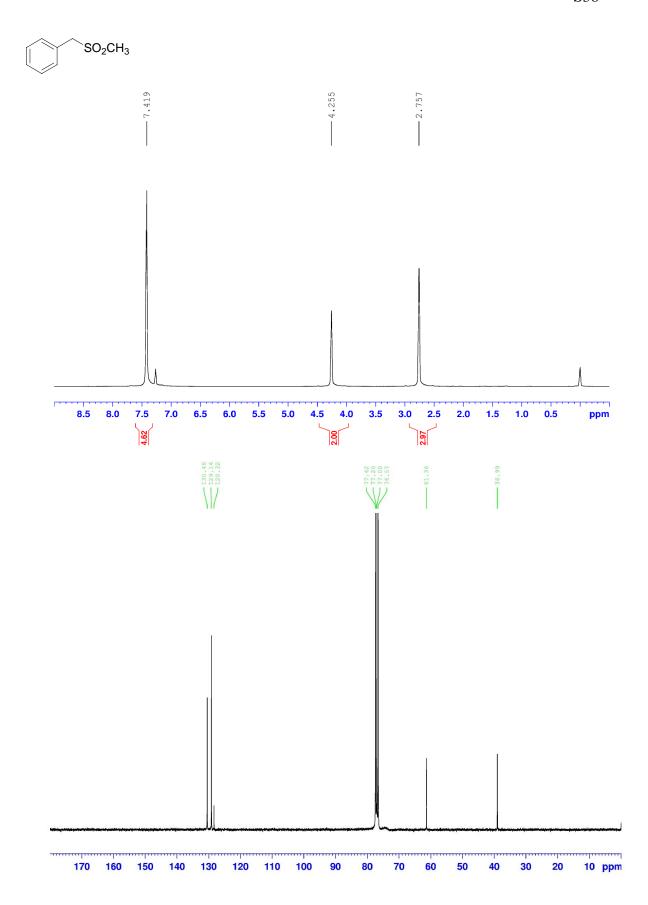

$4-CH_3C_6H_4SO_2C_8H_{17}$

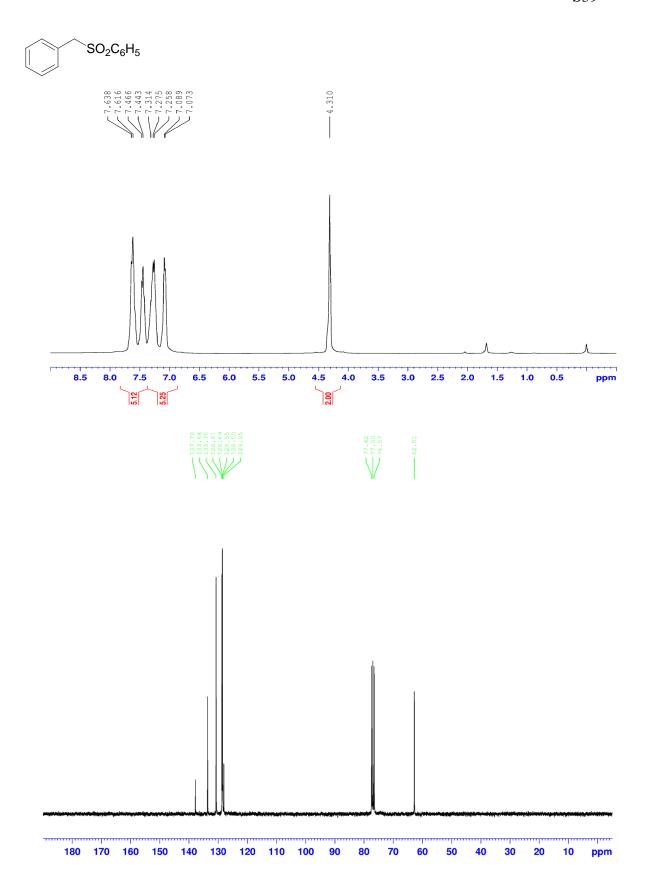












References:

- 1 Kabalka, G. W.; Varma, M.; Varma, R. S. J. Org. Chem. 1986, 51, 2386.
- 2 (a) Li, Y. X.; Bao, W. L.; Wang, Z. M. Chinese Chemical Letters 2003, 14, 239. (b)
 Lourenco, N. M. T.; Afonso, C. A. M. Tetrahedron 2003, 59, 789.
- 3 (a) Chiappe, C.; Pieraccini, D.; Saullo, P. J. Org. Chem. 2003, 68, 6710. (b) Alvarez, S. G.; Alvarez, M. T. Synthesis 1997, 413.
- 4 (a) Abu-Orabl, S. T.; Harmon, R. E. J. Chem. Eng. Data **1986**, *3*, 379.
- 5 Heras, M.; Ventura, M.; Linden, A.; Villalgordo, J. M. Tetrahedron 2001, 57, 4371.
- 6 Duarte, M. F.; Martins, F.; Fernandez, M. T.; Langley, G. J.; Rodrigues, P.; Barros, M. T.; Costa, M. L. *Rap. Commu. Mass Spect.* **2003**, *17*, 957.
- 7 Hoffman, R. V.; Kim, H. O. Tetrahedron **1992**, 48, 3007.
- 8 (a) Tamami, B.; Mahdavi, H. *Tetrahedron Lett.* **2001**, *42*, 8721. (b) Rafin, C.; Veignie, E.; Sancholle, M.; Postel, D.; Len, C.; Villa, P.; Ronco, G. *J. Agric. Food Chem.* **2000**, *48*, 5283.
- 9 Sasson, R.; Rozen, S. Org. Lett. 2005, 7, 2177.
- 10 Lee, J. W.; Jun, S. I.; Kim, K. Tetrahedron Lett. **2001**, 42, 2709.
- (a) Lee, J. W.; Jun, S. I.; Kim, K. *Tetrahedron. Lett.* **2001**, *42*, 2709. (b) Blumenstein, J.J.;
 Michejda, C. J. *Tetrahedron. Lett.* **1991**, *32*, 183. (c) LoCoco, M. D.; Zhang, X.; Jordan, R.
 F. *J. Am. Chem. Soc.* **2004**, *126*, 15231.
- 12 (a) Sommers, A. H.; Barnes, J. D. J. Am. Chem. Soc. 1957, 79, 3491. (b) Afonso, C. A. M. Synth. Commun. 1998, 28, 261.
- 13 Curtius, T.; Giulini, W. Ber. Dtsch. Chem. Ges. 1912, 45, 1049.

- 14 (a) King, J. F.; Loosmore, S. M.; Lock, J. D.; Aslam, M. J. Am. Chem. Soc. 1978, 100,1637. (b) Iranpoor, N.; Firouzabadi, H.; Shaterian, H. R. J. Chem. Res. (S). 1999, 11, 676.
- 15 Gabriel, S.; Lauer, W. E. Chem. Ber. 1890, 23, 89.
- 16 Vogelsang et al. Justus Liebigs Ann. Chem. 1950, 569, 183.
- 17 Ohtani, N.; Murakawa, S.; Watanabe, K.; Tsuchimoto, D.; Sato, D.; *J. Chem. Soc. Perkin Trans.* 2. **2000**, *9*, 1851.
- 18 Prabhu, K. R.; Ramesha, A. R.; Chandrasekaran, S. J. Org. Chem. 1995, 60, 7142.
- 19 Zil'berman, E. N.; Lazaris, A. Y. J. Gen. Chem. USSR (Engl. Transl.) 1963, 33, 1012.
- 20 Yoshida, T.; Saito, S. Bull. Chem. Soc. Jpn. 1982, 55, 3047.
- 21 (a) Sabol, A. J. Am. Chem. Soc. 1969, 91, 3603. (b) Baldwin, J. E.; Brown, J. E. J. Org. Chem. 1971, 36, 3642.
- 22 (a) Kader, A. T.; Stirling, C. J. M. J. Chem. Soc. 1962, 3686. (b) Field, L.; Boyd, E. T. J. Org. Chem. 1964, 29, 3273.
- (a) Negishi, E.; Makabe, H.; Shimoyama, I.; Wu, G.; Zhang, Y. *Tetrahedron* 1998, 54, 1095.
 (b) Ford, J. F.; Pitkethly, R. C.; Young, V. O. *Tetrahedron* 1958, 4, 325.
- 24 Howsam, R. W.; Stirling, C. J. M.; *J. Chem. Soc. Perkin Trans.* 2, **1972**, 2, 847.
- 25 Kende, A. S.; Mendiza, J. S. J. Org. Chem. **1990**, 55, 1125.
- 26 Douglass, I. B.; Ward, F. J.; Norton, R. V. J. Org. Chem. 1967, 32, 324.
- 27 Chen, Y.; Lam, Y.; Lai, Y.-H. Org. Lett. **2003**, *5*, 1067.