Microwaves Make Hydroformylation a Rapid and Easy Process

Elena Petricci, André Mann, Angèle Schoenfelder, Andrea Rota and Maurizio Taddei

Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy.
CEM Italia srl, Via dell’Artigianato, 6/8 24055 Cologno al Serio (BG), Italy
Laboratoire de Pharmacochimie de la Communication Cellulaire, CNRS-UMR7175, 74, rue du Rhin, BP 60024, F-67401 Illkirch, France

taddei.m@unisi.it

Supplementary Material.
General experimental procedure pag 2
Microwave plot pag 3
Characterisation of 2 pag 4
Characterisation of 4a pag 5
Characterisation of 6a pag 6
Characterisation of 8 pag 7
Characterisation of 10 pag 8
Characterisation of 12 pag 9
Characterisation of 14 pag 10
Characterisation of 16 pag 12
Characterisation of 19 pag 13
Characterisation of 22 pag 15
Characterisation of 25 pag 17
Characterisation of 26 pag 19
1H NMR spectrum of the mixture of 24 and 27 pag 21
Characterisation of 20 pag 22
General experimental conditions:
In a typical experiment the starting alkene (0.64 mmol) was dissolved in toluene (4 mL). (Ph₃P)₃Rh(CO)H (0.013 mmol), XANTPHOS (0.05 mmol) and [bmim][BF₄] (187 µL) were added. The yellow solution obtained was submitted to pressurized syngas at 40 psi (2.7 Atm) and heated for 4 minutes at 110°C by microwave irradiation at 150 W (value previously settled on the Microwave oven. The flask was cooled and the internal gas released. Et₂O (10 mL) was added to the reaction mixture and washed twice with H₂O (5 mL x 2); the organic layers were washed with brine (5 mL) and dried on dry Na₂SO₄. After filtration and evaporation \textit{in vacuo} the yellow oil obtained was purified by flash chromatography.
Microwave report:

Sample ID Null

Method el1 08/03/2006 12.00.10

<table>
<thead>
<tr>
<th>Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ramp Time</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hold Time</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Temperature</td>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pressure</td>
<td>250</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stirring</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>Cooling</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Pressure and temperature window.
1H NMR (200 MHz, CDCl$_3$) 0.85 (t, $J = 6.6$, 3H), 1.20 (m, 10H), 1.59 (m, 2H), 2.41 (m, 2H), 9.73 (s, 1H).
1HNMR (200 MHz, CDCl$_3$) 1.42 (d, $J = 7.0$, 3H), 3.61 (q, $J = 7.0$, 1H), 7.21 (m, 3H), 7.33 (m, 2H), 9.67 (s, 1H).
1H NMR (200 MHz, CDCl$_3$) 1.46 (d, $J = 7.2$, 3H), 2.34 (s, 3H), 3.56 (q, $J = 7.2$, 1H), 7.15 (d, $J = 6.8$, 2H), 7.26 (d, $J = 6.8$, 2H), 9.68 (s, 1H).
1H NMR (200 MHz, CDCl$_3$) 1.95 (m, 2H), 2.45 (t, $J = 7.2$, 2H), 2.65 (t, $J = 7.2$, 2H), 7.25 (m, 5H), 9.86 (s, 1H).
1H NMR (200 MHz, CDCl$_3$) 1.16 (t, J = 7.1, 3H), 1.58 (m, 4H), 2.21 (m, 2H), 2.34 (m, 2H), 4.03 (q, J = 7.1, 2H) 9.67 (s, 1H).
1H NMR (200 MHz, CDCl$_3$) 1.33 (m, 12H), 1.55 (m, 4H) 1.82 (m, 2H), 2.39 (t, 2H), 3.62 (t, 2H), 9.74 (s, 1H).
1H NMR (200 MHz, CDCl$_3$) 1.71 (m, 2H), 2.15 (m, 2H), 4.98 (m, 1H), 5.35 (m, 1H), 7.44 (m, 11H). 13C NMR (50 MHz, CDCl$_3$) 29.68, 39.40, 55.41, 195.10, 123.02, 125.49, 126.83, 128.39, 137.88, 152.99. m/z: ES/MS 302 [M+Na]$^+$. HRMS Calcd for C$_{19}$H$_{20}$N$_2$O$_7$S , 420.0991. Found 420.0989.
1^H NMR (200 MHz, CDCl$_3$) 1.75 (m, 4H), 2.52 (m, 2H), 3.78 (m, 2H), 7.71 (m, 2H), 7.84 (m, 2H), 9.69 (s, 1H).
1H NMR (200 MHz, CDCl$_3$): 1.72 (m, 4H), 2.34 (m, 4H), 2.83 (s, 3H), 4.99 (d, $J = 8.5$, 2H), 7.33 (m, 5H), 7.85 (m, 1H), 8.01 (m, 1H), 9.62 (s, 1H), 9.71 (s, 1H). 13C NMR (200 MHz, CDCl$_3$): 21.6, 24.55, 32.3, 33.2, 43.6, 48.5, 123.8, 125.1, 125.6, 125.91, 127.0, 128.2, 128.4, 131.7, 132.7, 133.8, 202.0. m/z (ES-MS) = 306 [M$^+$+Na] HRMS Calcd for C$_{18}$H$_{21}$NO$_2$ Exact Mass: 283.1572. Found 283.1569.
^{1}H NMR (200 MHz, CDCl$_3$) 1.78 (m, 4H), 2.47 (m, 2H), 2.69, (m, 2H), 7.55 (m, 4H), 7.92 (m, 1H), 8.65 (m, 1H), 9.77 (s, 1H). 13C NMR (200 MHz, CDCl$_3$) 22.15, 25.71, 37.24, 44.1, 126.01, 126.53, 128.15, 128.95, 131.97, 152.04, 201.71. m/z: 257 [M]$^+$, 279 [M+Na]$^+$. HRMS Calcd for C$_{15}$H$_{16}$N$_2$O$_2$; 256.1212. Found 256.1210.
1^H NMR (200 MHz, CDCl₃) 1.42 (s, 9H), 1.71 (m, 2H), 2.05 (m, 2H), 4.86 (m, 1H), 5.37 (m, 1H), 7.03 (m, 1H), 7.17 (m, 5H). ^13C NMR (200 MHz, CDCl₃) 23.75, 29.15, 38.51, 57.82, 73.41, 108.67, 125.37, 126.53, 128.44, 136.96, 151.38. \(m/z \) (ES-MS): 282 [M+Na]^+. HRMS Calcd for C₁₆H₂₁NO₂, 259.1572. Found 259.1569.
1H NMR (200 MHz, CDCl$_3$) 1.71 (m, 2H), 2.15 (m, 2H), 4.98 (m, 1H), 5.35 (m, 1H), 7.44 (m, 1H). 13C NMR (200 MHz, CDCl$_3$) 29.68, 39.40, 55.41, 195.10, 123.02, 125.49, 126.83, 128.39, 137.88, 152.99. m/z (ES-MS): 302 [M+Na]$^+$. HRMS Calcd for C$_{18}$H$_{17}$NO$_2$ Exact Mass: 279.1259 Found 279.1256.
1H NMR (200 MHz, CDCl$_3$): 1.77 (m, 4H), 2.30 (m, 5H), 4.76 (d, $J = 8.5$, 2H), 7.30 (m, 5H), 7.85 (m, 1H), 8.00 (m, 1H), 9.62 (s, 1H), 9.76 (s, 1H). 13C NMR (200 MHz, CDCl$_3$): 21.8, 24.5, 34.3, 33.9, 49.7, 123.9, 125.0, 125.6, 125.9, 127.0, 128.2, 128.3, 131.9, 133.0, 133.8, 200.7. m/z: ES/MS 292 [M+Na]$^+$. Anal. Calcd for C$_{17}$H$_{19}$NO$_2$: C, 75.81; H, 7.11; N, 5.20. Found: C, 75.89; H, 7.09; N, 5.19.