Metal-Protein Interactions: Structure Information From Ni$^{2+}$ Induced Pseudocontact Shifts in a Native Non-Metalloprotein

Malene Ringkjøbing Jensen and Jens J. Led

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

Supporting Information

Table S1: 1H and 15N NMR chemical shift values (ppm) of oxidized *Escherichia coli* thioredoxin at pH 7.0 and 298 K.
Table S1: 1H and 15N NMR chemical shift values (ppm) of oxidized *Escherichia coli* thioredoxin at pH 7.0 and 298 K.

<table>
<thead>
<tr>
<th>Residue</th>
<th>Native form</th>
<th>Ni$^{2+}$-bound form</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NH</td>
<td>N</td>
</tr>
<tr>
<td>Ser 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asp 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys 3</td>
<td>8.37</td>
<td>118.88</td>
</tr>
<tr>
<td>Ile 4</td>
<td>7.33</td>
<td>121.16</td>
</tr>
<tr>
<td>Ile 5</td>
<td>8.23</td>
<td>125.71</td>
</tr>
<tr>
<td>His 6</td>
<td>8.81</td>
<td>125.70</td>
</tr>
<tr>
<td>Leu 7</td>
<td>8.88</td>
<td>124.59</td>
</tr>
<tr>
<td>Thr 8</td>
<td>8.14</td>
<td>108.18</td>
</tr>
<tr>
<td>Asp 9</td>
<td>8.21</td>
<td>119.85</td>
</tr>
<tr>
<td>Asp 10</td>
<td>8.21</td>
<td>116.43</td>
</tr>
<tr>
<td>Ser 11</td>
<td>8.27</td>
<td>117.96</td>
</tr>
<tr>
<td>Phe 12</td>
<td>7.68</td>
<td>125.41</td>
</tr>
<tr>
<td>Asp 13</td>
<td>8.68</td>
<td>117.24</td>
</tr>
<tr>
<td>Thr 14</td>
<td>7.75</td>
<td>112.51</td>
</tr>
<tr>
<td>Asp 15</td>
<td>8.42</td>
<td>118.96</td>
</tr>
<tr>
<td>Val 16</td>
<td>7.54</td>
<td>113.02</td>
</tr>
<tr>
<td>Leu 17</td>
<td>6.97</td>
<td>116.35</td>
</tr>
<tr>
<td>Lys 18</td>
<td>7.36</td>
<td>115.29</td>
</tr>
<tr>
<td>Ala 19</td>
<td>6.59</td>
<td>122.49</td>
</tr>
<tr>
<td>Asp 20</td>
<td>8.51</td>
<td>121.38</td>
</tr>
<tr>
<td>Gly 21</td>
<td>8.12</td>
<td>108.68</td>
</tr>
<tr>
<td>Ala 22</td>
<td>8.41</td>
<td>123.33</td>
</tr>
<tr>
<td>Ile 23</td>
<td>8.95</td>
<td>123.77</td>
</tr>
<tr>
<td>Leu 24</td>
<td>9.21</td>
<td>130.67</td>
</tr>
<tr>
<td>Val 25</td>
<td>9.74</td>
<td>126.72</td>
</tr>
<tr>
<td>Asp 26</td>
<td>8.85</td>
<td>125.38</td>
</tr>
<tr>
<td>Phe 27</td>
<td>8.61</td>
<td>127.85</td>
</tr>
<tr>
<td>Trp 28</td>
<td>8.64</td>
<td>120.50</td>
</tr>
<tr>
<td>Ala 29</td>
<td>6.46</td>
<td>115.97</td>
</tr>
<tr>
<td>Glu 30</td>
<td>9.39</td>
<td>121.92</td>
</tr>
<tr>
<td>Trp 31</td>
<td>6.58</td>
<td>111.21</td>
</tr>
<tr>
<td>Cys 32</td>
<td>6.81</td>
<td>120.66</td>
</tr>
<tr>
<td>Gly 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro 34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cys 35</td>
<td>8.23</td>
<td>111.09</td>
</tr>
<tr>
<td>Lys 36</td>
<td>7.92</td>
<td>121.04</td>
</tr>
<tr>
<td>Met 37</td>
<td>7.58</td>
<td>117.40</td>
</tr>
<tr>
<td>Ile 38</td>
<td>7.22</td>
<td>111.10</td>
</tr>
<tr>
<td>Ala 39</td>
<td>7.24</td>
<td>125.18</td>
</tr>
<tr>
<td>Pro 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residue</td>
<td>NH</td>
<td>N</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>Ile 41</td>
<td>6.71</td>
<td>116.90</td>
</tr>
<tr>
<td>Leu 42</td>
<td>7.88</td>
<td>119.75</td>
</tr>
<tr>
<td>Asp 43</td>
<td>7.29</td>
<td>118.57</td>
</tr>
<tr>
<td>Glu 44</td>
<td>7.20</td>
<td>118.11</td>
</tr>
<tr>
<td>Ile 45</td>
<td>8.50</td>
<td>121.03</td>
</tr>
<tr>
<td>Ala 46</td>
<td>8.58</td>
<td>122.45</td>
</tr>
<tr>
<td>Asp 47</td>
<td>7.10</td>
<td>115.03</td>
</tr>
<tr>
<td>Glu 48</td>
<td>8.57</td>
<td>121.04</td>
</tr>
<tr>
<td>Tyr 49</td>
<td>8.75</td>
<td>115.46</td>
</tr>
<tr>
<td>Gln 50</td>
<td>7.06</td>
<td>121.21</td>
</tr>
<tr>
<td>Gly 51</td>
<td>9.24</td>
<td>115.54</td>
</tr>
<tr>
<td>Lys 52</td>
<td>8.17</td>
<td>117.92</td>
</tr>
<tr>
<td>Leu 53</td>
<td>7.82</td>
<td>119.52</td>
</tr>
<tr>
<td>Thr 54</td>
<td>8.09</td>
<td>123.50</td>
</tr>
<tr>
<td>Val 55</td>
<td>9.95</td>
<td>129.99</td>
</tr>
<tr>
<td>Ala 56</td>
<td>9.30</td>
<td>129.66</td>
</tr>
<tr>
<td>Lys 57</td>
<td>8.65</td>
<td>118.35</td>
</tr>
<tr>
<td>Leu 58</td>
<td>8.89</td>
<td>123.21</td>
</tr>
<tr>
<td>Asn 59</td>
<td>9.07</td>
<td>126.68</td>
</tr>
<tr>
<td>Ile 60</td>
<td>8.50</td>
<td>122.09</td>
</tr>
<tr>
<td>Asp 61</td>
<td>7.73</td>
<td>122.26</td>
</tr>
<tr>
<td>Gln 62</td>
<td>7.25</td>
<td>116.27</td>
</tr>
<tr>
<td>Asn 63</td>
<td>7.38</td>
<td>116.26</td>
</tr>
<tr>
<td>Pro 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gly 65</td>
<td>10.27</td>
<td>112.63</td>
</tr>
<tr>
<td>Thr 66</td>
<td>7.86</td>
<td>118.96</td>
</tr>
<tr>
<td>Ala 67</td>
<td>9.75</td>
<td>124.09</td>
</tr>
<tr>
<td>Pro 68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys 69</td>
<td>7.35</td>
<td>117.22</td>
</tr>
<tr>
<td>Tyr 70</td>
<td>7.30</td>
<td>114.78</td>
</tr>
<tr>
<td>Gly 71</td>
<td>7.50</td>
<td>107.98</td>
</tr>
<tr>
<td>Ile 72</td>
<td>7.15</td>
<td>119.39</td>
</tr>
<tr>
<td>Arg 73</td>
<td>8.53</td>
<td>128.36</td>
</tr>
<tr>
<td>Gly 74</td>
<td>7.64</td>
<td>108.53</td>
</tr>
<tr>
<td>Ile 75</td>
<td>8.23</td>
<td>113.03</td>
</tr>
<tr>
<td>Pro 76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thr 77</td>
<td>7.93</td>
<td>120.12</td>
</tr>
<tr>
<td>Leu 78</td>
<td>9.14</td>
<td>126.21</td>
</tr>
<tr>
<td>Leu 79</td>
<td>9.01</td>
<td>121.42</td>
</tr>
<tr>
<td>Leu 80</td>
<td>8.82</td>
<td>124.96</td>
</tr>
<tr>
<td>Phe 81</td>
<td>9.97</td>
<td>128.38</td>
</tr>
<tr>
<td>Lys 82</td>
<td>8.75</td>
<td>116.96</td>
</tr>
<tr>
<td>Asn 83</td>
<td>9.38</td>
<td>123.94</td>
</tr>
<tr>
<td>Residue</td>
<td>NH</td>
<td>N</td>
</tr>
<tr>
<td>---------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Gly 84</td>
<td>9.58</td>
<td>104.49</td>
</tr>
<tr>
<td>Glu 85</td>
<td>7.81</td>
<td>118.65</td>
</tr>
<tr>
<td>Val 86</td>
<td>8.79</td>
<td>122.76</td>
</tr>
<tr>
<td>Ala 87</td>
<td>9.65</td>
<td>133.53</td>
</tr>
<tr>
<td>Ala 88</td>
<td>7.69</td>
<td>117.41</td>
</tr>
<tr>
<td>Thr 89</td>
<td>8.50</td>
<td>115.37</td>
</tr>
<tr>
<td>Lys 90</td>
<td>8.98</td>
<td>126.23</td>
</tr>
<tr>
<td>Val 91</td>
<td>8.60</td>
<td>125.76</td>
</tr>
<tr>
<td>Gly 92</td>
<td>8.00</td>
<td>113.17</td>
</tr>
<tr>
<td>Ala 93</td>
<td>8.16</td>
<td>118.31</td>
</tr>
<tr>
<td>Leu 94</td>
<td>6.78</td>
<td>119.44</td>
</tr>
<tr>
<td>Ser 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lys 96</td>
<td>9.32</td>
<td>121.62</td>
</tr>
<tr>
<td>Gly 97</td>
<td>8.79</td>
<td>105.52</td>
</tr>
<tr>
<td>Gln 98</td>
<td>7.68</td>
<td>120.84</td>
</tr>
<tr>
<td>Leu 99</td>
<td>8.54</td>
<td>123.61</td>
</tr>
<tr>
<td>Lys 100</td>
<td>8.73</td>
<td>119.65</td>
</tr>
<tr>
<td>Glu 101</td>
<td>7.81</td>
<td>117.80</td>
</tr>
<tr>
<td>Phe 102</td>
<td>7.61</td>
<td>120.20</td>
</tr>
<tr>
<td>Leu 103</td>
<td>8.56</td>
<td>121.11</td>
</tr>
<tr>
<td>Asp 104</td>
<td>9.18</td>
<td>119.88</td>
</tr>
<tr>
<td>Ala 105</td>
<td>7.47</td>
<td>118.44</td>
</tr>
<tr>
<td>Asn 106</td>
<td>7.24</td>
<td>113.25</td>
</tr>
<tr>
<td>Leu 107</td>
<td>7.78</td>
<td>120.84</td>
</tr>
<tr>
<td>Ala 108</td>
<td>7.49</td>
<td>128.86</td>
</tr>
</tbody>
</table>