SUPPORTING INFORMATION

for

The Hydrogenation/Transfer Hydrogenation Network:
Asymmetric Hydrogenation of Ketones with Chiral
η^6-Arene/N-Tosylethlenediamine–Ruthenium(II) Catalysts

Takeshi Ohkuma, Noriyuki Utsumi, Kunihiro Tsutsumi, Kunihiko Murata,
Christian A. Sandoval, and Ryoji Noyori*

CONTENTS

(1) Procedure for silanization of glassware
Page S2
(2) Procedure for the preparation of (S,S)-8b
Page S2
(3) Procedure for the asymmetric hydrogenation of
4-chromanone (6a) with (S,S)-8a
Page S3
(4) Procedure for the asymmetric hydrogenation of
4-chromanone (6a) with (S,S)-8b
Page S4
(5) Analytical data of hydrogenation products
Page S4
(6) Procedure for large-scale asymmetric
hydrogenation of 4-chromanone (6a)
Page S5
(1) Procedure for silanization of glassware

The use of a silanized glass reaction vessel was necessary to secure the reproducibility. Although HMDS (hexamethyldisilazide) and TMSCl gave similar results, the HMDS treatment was more convenient. A 100-mL glass vessel was charged with 0.5 mL of HMDS, capped with a silicon rubber, and heated at 30 °C for 24 h. Then the vessel was washed with water and acetone, heated at 100 °C for 30 min, and dried under reduced pressure for 2 h. The vessel was stored under Ar gas.

(2) Procedure for the preparation of (S,S)-8b

A solution of TfOH (70 µL, 0.79 mmol) in CH$_2$Cl$_2$ (10 mL) was added dropwise to a solution of (S,S)-9 (570 mg, 0.95 mmol) in CH$_2$Cl$_2$ (55 mL) under an Ar atmosphere at room temperature over a period of 30 min. Then the solution was stirred for 30 min and evaporated to a volume of 15 mL. Cooling the solution to 0 °C gave an orange precipitate. The precipitate was filtered and dried under reduced pressure to give (S,S)-8b (380 mg, 65% yield).

1H NMR (400 MHz, 21 mM in CD$_2$Cl$_2$) δ 1.30, 1.33 (each d, $J = 7$ Hz, 3H x 2, CH(CH$_3$)$_2$), 2.12 (s, 3H, CH$_3$), 2.27 (s, 3H, CH$_3$ of Ts), 2.76 (m, 1H, CH(CH$_3$)$_2$), 3.75 (m, 1H, CHNH$_2$), 4.21 (d, $J = 8$ Hz, 1H, CHNTs), 4.71 (m, 1H, NH), 5.68 (m, 1H, NHH). 5.84 (d, $J = 6$ Hz, 1H, aromatic proton), 5.94 (m, 2H, aromatic proton), 6.11 (d, $J = 6$ Hz, 1H, aromatic proton), 6.63–7.25 (m, 14H, aromatic protons).

1H NMR (400 MHz, 10 mM in THF-d_8) δ 1.37, 1.43 (each d, $J = 7$ Hz, 3H x 2, CH(CH$_3$)$_2$), 2.18 (s, 3H, CH$_3$), 2.29 (s, 3H, CH$_3$ of Ts), 2.98 (m, 1H, CH(CH$_3$)$_2$), 3.55 (m, 1H, CHNH$_2$), 3.85 (m, 1H, NHH), 3.94 (d, $J = 11$ Hz, 1H, CHNTs), 5.78 (d, $J = 6$ Hz, 1H, aromatic proton), 5.92–5.93 (m, 2H, aromatic protons), 6.15 (d, $J = 6$ Hz, 1H, aromatic proton), 6.5–7.1 (m, 14H, aromatic protons), 7.16 (m, 1H, NHH).

1H NMR (400 MHz, 21 mM in CD$_3$OH) δ 1.40, 1.43 (each d, $J = 7$ Hz, 3H x 2, CH(CH$_3$)$_2$), 2.24 (s, 3H, CH$_3$), 2.37 (s, 3H, CH$_3$ of Ts), 3.02 (m, 1H, CH(CH$_3$)$_2$), 3.45 (m, 1H, NHH), 3.68 (m, 1H, CHNH$_2$), 4.02 (d, $J = 11$ Hz, 1H, CHNTs), 5.63 (d, $J = 6$ Hz, 1H, aromatic proton), 6.11 (d, $J = 6$ Hz, 1H, aromatic proton), 6.63–7.25 (m, 14H, aromatic protons), 7.16 (m, 1H, NHH).
Hz, 1H, aromatic proton), 6.00–6.05 (m, 3H, aromatic protons), 6.60–7.19 (m, 14H, aromatic protons), 7.60 (m, 1H, NH).

13C NMR (100.4 MHz, THF-d_8) δ 18.6, 21.1, 22.6, 22.8, 31.4, 70.3, 73.2, 82.4, 82.9, 84.2, 84.3, 97.0, 101.2, 127.0, 127.8, 128.1, 128.6, 128.7, 128.8, 129.2, 130.0, 139.7, 139.9, 140.3, 143.6.

Anal. calcd. for: C 51.26, H 4.70, N 3.74, found: C 51.09, H 4.47, N 3.74.

(3) Procedure for the asymmetric hydrogenation of 4-chromanone (6a) with (S,S)-8a

4-Chromanone (6a) (0.89 g, 6.0 mmol) and (S,S)-8a (1.3 mg, 2 µmol) were placed in a 100-mL glass autoclave. The atmosphere was replaced with Ar gas, and methanol (19.3 mL) was added to this mixture. Hydrogen was initially introduced into the autoclave at a pressure of 10 atm, before being reduced to 1 atm. This procedure was repeated three times. Then the autoclave was pressurized with H$_2$ gas (10 atm), and the solution was stirred vigorously at 60 °C for 15 h. The 1H-NMR and HPLC analysis indicated that (S)-4-chromanol [(S)-7a] with 95% ee was obtained in 64% yield.

Pure (S)-7a (0.52 g, 58% yield) was obtained by silica gel chromatography.

1H NMR (400 MHz, CDCl$_3$) δ 1.99 (m, 1H, CHHCH(OH)), 2.08 (m, 1H, CHHCH(OH)), 2.31 (br, 1H, OH), 4.23 (m, 2H, CH$_2$O), 4.74 (m, 1H, CHOH), 6.8–6.9 (m, 2H, aromatic protons), 7.2–7.3 (m, 2H, aromatic protons).

The HPLC analytical conditions were used as follows: column, CHIRALCEL OJ-H (4.6 mm i.d. x 250 mm); eluent, hexane/2-propanol = 99/1; flow rate, 1.5 mL/min; temp, 35 °C; detection, UV (220 nm). The retention times were as follows: 6a, 11.8 min, (S)-7a, 26.7 min, (R)-7a, 30.8 min.

[α]$_{D}^{25}$ -77 (c 0.5, C$_2$H$_5$OH), (lit. [α]$_{D}^{25}$ +80.4, c 0.5, C$_2$H$_5$OH, 100% ee (R), Zhang, X.; Takemoto, T.; Yoshizumi, T.; Kumobayashi, H.; Akutagawa, S.; Mashima, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 3318–3319).
(4) Procedure for the asymmetric hydrogenation of 4-chromanone (6a) with (S,S)-8b

4-Chromanone (6a) (0.89 g, 6.0 mmol) and (S,S)-8b (1.5 mg, 2 µmol) were placed in a 100-mL glass autoclave. The atmosphere was replaced with Ar gas, and methanol (5.3 ml) was added to this solution. Hydrogen was initially introduced into the autoclave at a pressure of 10 atm, before being reduced to 1 atm. This procedure was repeated three times. Then the autoclave was pressurized with H₂ gas (10 atm), and the solution was stirred vigorously at 60 °C for 15 h to give (S)-4-chromanol [(S)-7a] with 97% ee in 100% yield. The solvent was removed under reduced pressure and the Ru catalyst was removed by silica gel chromatography, giving (S)-7a (0.84 g, 93% yield).

(5) Analytical data of hydrogenation products

(S)-6-Methyl-4-chromanol [(S)-7b]

¹H NMR (400 MHz, CDCl₃) δ 1.97–2.13 (m, 2H, CH₂HCH(OH)), 2.27 (s, 3H, CH₃), 4.21 (m, 2H, CH₂O), 4.72 (m, 1H, CHOH), 6.73 (d, J = 8.3 Hz, 1H, aromatic proton), 7.00 (d, J = 8.3 Hz, 1H, aromatic proton), 7.10 (s, 1H, aromatic proton).

The HPLC analytical conditions were as follows: column, CHIRALCEL OJ-H (4.6 mm i.d. x 250 mm); eluent, hexane/2-propanol = 99/1; flow rate, 1.5 mL/min; temp, 35 °C; detection, UV (220 nm). The retention times were: 6b, 8.6 min, (S)-7b, 23.4 min, (R)-7b, 29.2 min.

(S)-6-Chloro-4-chromanol [(S)-7c]

¹H NMR (400 MHz, CDCl₃) δ 1.82 (br, 1H, OH), 2.00–2.16 (m, 2H, CH₂HCH(OH)), 4.26 (m, 2H, CH₂O), 4.77 (m, 1H, CHOH), 6.77 (d, J = 8.8 Hz, 1H, aromatic ring proton), 7.15 (d, J = 8.3 Hz, 1H, aromatic proton), 7.30 (s, 1H, aromatic proton).

The HPLC analytical conditions were as follows: column, CHIRALCEL OJ-H (4.6 mm i.d. x 250 mm); eluent, hexane/2-propanol = 99/1; flow rate, 1.5 mL/min; temp, 35 °C;
detection, UV (220 nm). The retention times were: 6c, 9.9 min, (R)-7c, 33.7 min, (S)-7c, 36.9 min,
\([\alpha]D^{25} -24 \ (c \ 1.0, \ CHCl_3), \) (lit. \([\alpha]D^{25} -24, \ c \ 1.0, \ CHCl_3, \ 80\% \ ee \ (S), \) Ramadas, S.;

(6) Procedure for the large–scale asymmetric hydrogenation of 4-chromanone (6a)

4-Chromanone (6a) (2.37 kg, 16 mol), (S,S)-9 (9.6 g, 16 mmol), and TfOH (1.42
ml, 16 mmol) were added to methanol (8 L) placed in a 20-L SUS autoclave.
Hydrogen was initially introduced into the autoclave at a pressure of 10 atm, before
being reduced to 1 atm. This procedure was repeated three times. Then the
aucoclave was pressurized with H\(_2\) gas (17 atm), and the solution was stirred vigorously
at 60 °C for 15 h. The \(^1\)H-NMR and HPLC analysis indicated that (S)-4-chromanol
[(S)-7a] with 97% ee was produced in 99% yield.