1,3-Diketones from Acid Chlorides: A Rapid and General One-Pot Synthesis of Pyrazoles

Stephen T. HellerP*P and Swaminathan R. Natarajan

Department of Medicinal Chemistry, Merck Research Laboratories, P.O. Box 2000, Rahway, New Jersey 07065

stephen_heller@merck.com

Supporting Information

Table of Contents

General Procedure S3
General Experimental Information S3

Compound Data:
5, 6a,b S4
7, 8, 9 S5
10, 12, 13 S6
14, 15, 16 S7
17, 19, 20 S8
21a,b, 22 S9
23, 24, 25 S10

NMR spectra:
7 \(^1\text{H} \) S12
7 \(^1\text{H} \) \(^{13}\text{C} \) S13
8 \(^1\text{H} \) S14
8 \(^1\text{H} \) \(^{13}\text{C} \) S15
9 \(^1\text{H} \) S16
9 \(^1\text{H} \) \(^{13}\text{C} \) S17
10 \(^1\text{H} \) S18
10 \(^1\text{H} \) \(^{13}\text{C} \) S19
5 \(^1\text{H} \) S20
5 \(^1\text{H} \) \(^{13}\text{C} \) S21
<table>
<thead>
<tr>
<th>Carbon</th>
<th>Hydrogen</th>
<th>Isotopes</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S22</td>
</tr>
<tr>
<td>12</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S23</td>
</tr>
<tr>
<td>13</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S24</td>
</tr>
<tr>
<td>13</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S25</td>
</tr>
<tr>
<td>14</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S26</td>
</tr>
<tr>
<td>14</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S27</td>
</tr>
<tr>
<td>15</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S28</td>
</tr>
<tr>
<td>15</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S29</td>
</tr>
<tr>
<td>16</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S30</td>
</tr>
<tr>
<td>16</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S31</td>
</tr>
<tr>
<td>19</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S32</td>
</tr>
<tr>
<td>19</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S33</td>
</tr>
<tr>
<td>20</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S34</td>
</tr>
<tr>
<td>20</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S35</td>
</tr>
<tr>
<td>22</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S36</td>
</tr>
<tr>
<td>22</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S37</td>
</tr>
<tr>
<td>23</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S38</td>
</tr>
<tr>
<td>23</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S39</td>
</tr>
<tr>
<td>24</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S40</td>
</tr>
<tr>
<td>24</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S41</td>
</tr>
<tr>
<td>25</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S42</td>
</tr>
<tr>
<td>25</td>
<td>1H</td>
<td>13C</td>
<td></td>
<td>S43</td>
</tr>
</tbody>
</table>
General Procedure: Ketone (2 mmol) was dissolved in 5 mL dry toluene in a screw cap vial (with septum) and then the solution was cooled to 0°C under nitrogen. LiHMDS (2.1 mL, 1.0 M in THF, 2.1 mmol) was added quickly via syringe with agitation stirring and the formed anion was allowed to sit for approximately 1 minute before the addition via syringe\(^1\) of acid chloride (1 mmol) in one portion with stirring. The vial was then removed from the ice bath and allowed to stand for 1 minute, then 2 mL AcOH was added with stirring. 10 mL EtOH and 5 mL THF was added to form a homogeneous mixture, and then hydrazine hydrate (2 mL, 1.1 g, 34.3 mmol) or substituted hydrazine (5 mmol) was added and the mixture was allowed to auto-reflux and was held at that temperature for 5 minutes, when LCMS showed that all diketone had reacted. The resulting solution was added to 1.0 M NaOH solution and extracted with EtOAc. The organic fraction was then washed with brine, dried over Na\(_2\)SO\(_4\), and evaporated under reduced pressure. See specific compounds for purification details.

General Comments: All reagents were purchased from Aldrich and were used as received. LiHMDS solutions were rigorously kept under a nitrogen atmosphere after opening. Dry toluene and THF were supplied by Acros. All other solvents were provided by Fisher Scientific. All chemistry was performed under a nitrogen atmosphere using standard techniques. NMR spectra were taken with a Varian Inova (400 MHz or 500 MHz). LC/MS were obtained using a Agilent 1100 series LC and Micromass Zq spectrometer. Column chromatography was performed using a Biotage Horizon system utilizing standard pre-packed silica gel cartridges (40g).

\(^1\) Solid acid chlorides were dissolved in 2 mL toluene and the minimum amount of THF required to make a solution.
Spectroscopic Notes: All spectra calibrated with TMS, or in the case of 13C experiments, the solvent peak (CDCl$_3$ = 77.0 ppm, d$_6$-DMSO = 39.5 ppm). The room temperature 1H NMR spectra of 11 and 20 showed two distinct tautomers. In both cases, the relevant peaks converged substantially. Reported data is taken from experiments run at 70°C. This effect was also observed in the 13C NMR for 9, for which the reported data corresponds to the major tautomer. In a few cases quaternary carbons were not detected in 13C NMR experiments.

![5-(4-bromophenyl)-3-(4-methoxyphenyl)-1H-pyrazole (5)](image)

5-(4-bromophenyl)-3-(4-methoxyphenyl)-1H-pyrazole (5). Crystallized from 2-propanol/water. 1H NMR (400 MHz, d$_6$-DMSO) δ 13.30 (s, 1H), 7.80 (d, J = 7.6, 2H), 7.75 (d, J = 8 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.11 (s, 1H), 7.03 (d, J = 8 Hz, 2H), 3.80 (s, 3H); 13C NMR (500 MHz, d$_6$-DMSO) δ 159.1, 131.7, 127.0, 126.5, 120.7, 114.3, 99.0, 55.1; HRMS calcd for C$_{16}$H$_{14}$BrN$_2$O, 331.0271; found, 331.0280.

![3-(4-bromophenyl)-5-(4-methoxyphenyl)-1-methylpyrazole (6a)](image)

3-(4-bromophenyl)-5-(4-methoxyphenyl)-1-methylpyrazole (6a). Crystallized from 2-propanol/water. 1H NMR (400 MHz, CDCl$_3$) δ 7.73 (d, J = 8.8 Hz, 2H), 7.55 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.8 Hz, 2H), 6.92 (d, J = 8.4 Hz, 2H), 6.49 (s, 1H), 3.83 (s, 3H), 3.78 (s, 3H); MS calcd for C$_{17}$H$_{15}$BrN$_2$O, 343.04; found, 343.06.

![5-(4-bromophenyl)-3-(4-methoxyphenyl)-1-methylpyrazole (6b)](image)

5-(4-bromophenyl)-3-(4-methoxyphenyl)-1-methylpyrazole (6b). Crystallized from 2-propanol/water. 1H NMR (400 MHz, CDCl$_3$) δ 7.68 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.4 Hz, 2H), 6.49 (s, 1H), 3.84 (s, 3H), 3.81 (s, 3H); C$_{17}$H$_{15}$BrN$_2$O, 343.04; found, 343.08.
3-(4-bromophenyl)-5-pentyl-1H-pyrazole (7). Crystallized from 2-propanol/water.

\(^{1}\text{H NMR}\) (400 MHz, CDCl\(_3\)) \(\delta\) 7.59 (d, \(J = 8.4\) Hz, 2H), 7.47 (d, \(J = 8.4\)), 6.31 (s, 1H), 2.59-2.53 (m 2H), 1.61-1.58 (m, 2H), 1.30-1.28 (m, 4H), 0.88 (t, 3H); \(^{13}\text{C NMR}\) (400 MHz, CDCl\(_3\)) \(\delta\) 131.7, 127.2, 121.6, 100.9, 31.4, 28.8, 26.1, 22.4, 13.9; \(\text{HRMS}\) calcd for C\(_{14}\)H\(_{18}\)BrN\(_2\), 295.0634; found, 295.0644.

3-(4-bromophenyl)-5-(5-chloropentyl)-1H-pyrazole (8). Crystallized from 2-propanol/water.

\(^{1}\text{H NMR}\) (400 MHz, CDCl\(_3\)) \(\delta\) 7.59 (d, \(J = 8.4\) Hz, 2H), 7.49 (d, \(J = 8.4\)), 6.33 (s, 1H), 3.51 (t, 2H), 2.63-2.60 (m 2H), 1.80-1.73 (quint, 2H), 1.70-1.62 (quint, 2H), 1.50-1.44 (m, 2H); \(^{13}\text{C NMR}\) (500 MHz, CDCl\(_3\)) \(\delta\) 131.7, 127.2, 121.8, 101.1, 44.8, 32.2, 28.4, 26.4, 26.0; \(\text{HRMS}\) calcd for C\(_{14}\)H\(_{17}\)BrClN\(_2\), 329.0242; found, 329.0240.

5-(4-bromophenyl)-3-(4-cyanophenyl)-1H-pyrazole (9). Recrystallized from 2-propanol/water.

\(^{1}\text{H NMR}\) (400 MHz, d\(_6\)-DMSO) \(\delta\) 13.71 (s, 1H), 8.04-7.92 (m, 4H), 7.79-7.70 (m, 4H), 7.42 (s, 1H); \(^{13}\text{C NMR}\) (500 MHz, d\(_6\)-DMSO) \(\delta\) 149.8, 142.8, 137.9,
132.7, 132.0, 128.2, 127.1, 125.6, 121.4, 119.0, 109.8, 101.1; **HRMS** calcd for C$_{16}$H$_{11}$BrN$_3$, 326.0117; found, 326.0107

![Chemical structure of 5-(2-methylphenyl)-3-(4-cyanophenyl)-1H-pyrazole (10).](image1)

5-(2-methylphenyl)-3-(4-cyanophenyl)-1H-pyrazole (10). Crystallized from 2-propanol/water. **1H NMR** (400 MHz, d$_6$-DMSO, T = 70°C) δ 12.97 (s, 1H), 7.88-7.75 (b, 2H), 7.67-7.58 (b, 2H), 7.46 (b, 1H), 7.36-7.20 (b, 3H), (bd, 6.92-6.84, 1H), 2.41 (s, 3H); **13C NMR** (400 MHz, d$_6$-DMSO) δ 149.5, 142.9, 135.5, 133.0, 131.9, 131.5, 130.8, 129.4, 128.7, 128.4, 127.1, 126.0, 120.3, 20.5; **HRMS** calcd for C$_{16}$H$_{14}$BrN$_2$, 315.0321; found, 315.0324.

![Chemical structure of 3-(4-((N,N-dimethylamino)phenyl)-5-(4-methoxyphenyl)-1H-pyrazole (12).](image2)

3-(4-(N,N-dimethylamino)phenyl)-5-(4-methoxyphenyl)-1H-pyrazole (12). Crystallized from 2-propanol/water. **1H NMR** (400 MHz, d$_6$-DMSO) δ 12.92 (s, 1H), 7.75-7.62 (m, 4H), 6.99 (d, 2H), 6.86 (s, 1H), 6.77 (d, J = 8 Hz, 2H), 3.79 (s, 3H), 2.94 (s, 6H); **13C NMR** (500 MHz, d$_6$-DMSO) δ 158.8, 150.0, 126.4, 126.0, 114.1, 112.3, 97.3, 55.1, 40.0; **HRMS** calcd for C$_{18}$H$_{20}$BrN$_3$O, 294.1606; found, 294.1606.

![Chemical structure of 3-(4-cyanophenyl)-5-(4-methoxyphenyl)-1H-pyrazole (13).](image3)

3-(4-cyanophenyl)-5-(4-methoxyphenyl)-1H-pyrazole (13). Recrystallized from toluene. **1H NMR** (400 MHz, d$_6$-DMSO) δ 13.47 (s, 1H), 8.04 (d, J = 7.6 Hz, 2H), 7.90 (d, J = 7.6, 2H), 7.76 (d, J = 8.0 Hz, 2H), 7.25 (s, 1H), 7.05 (d, J = 8 Hz, 2H), 3.81 (s, 3H), 3.58 (s, 3H); **HRMS** calcd for C$_{19}$H$_{20}$BrN$_3$O, 313.0384; found, 313.0387.
5-(4-chlorophenyl)-3-(4-methoxyphenyl)-4-phenyl-1H-pyrazole (14). Crystallized from 2-propanol/water. 1H NMR (400 MHz, d_6-DMSO) δ 13.36 (s, 1H), 7.34-7.16 (m, 11H), 6.91-6.83 (m, 2H), 3.74 (s, 3H); 13C NMR (400 MHz, d_6-DMSO) δ 159.0, 147.7, 140.4, 133.7, 131.7, 130.5, 128.9, 128.7, 128.6, 128.1, 127.1, 121.7, 116.2, 114.0, 113.5, 55.1; HRMS calcd for C$_{122}$H$_{18}$ClN$_2$O, 361.1108; found, 361.1111.

5-(4-chlorophenyl)-3-(4-methoxyphenyl) 4-propyl-1H-pyrazole (15). Crystallized from 2-propanol/water. 1H NMR (400 MHz, d_6-DMSO) δ 13.00 (s, 1H), 7.67-7.46 (m, 6H), 7.09-7.03 (m, 2H), 3.81 (s, 3H), 2.64 (t, 2H), 1.41-1.35 (hex, 2H), 0.78 (t, 3H); 13C NMR (400 MHz, d_6-DMSO) δ 159.0, 148.5, 140.6, 133.8, 131.7, 129.4, 129.0, 128.8, 128.4, 122.6, 114.2, 55.1, 25.3, 23.4, 13.9; HRMS calcd for C$_{19}$H$_{20}$ClN$_2$O, 327.1264; found, 327.1257.

3-(4-methoxyphenyl)-5-(4-nitrophenyl)-1H-pyrazole (16). Crystallized from 2-propanol/water. 1H NMR (400 MHz, d_6-DMSO) δ 13.60 (s, 1H), 8.30 (d, $J = 8$ Hz, 2H),
8.12 (d, \(J = 8 \) Hz, 2H), 7.76 (d, \(J = 8 \) Hz, 2H), 7.29 (s, 1H), 7.06 (d, \(J = 8 \) Hz, 2H), 3.81 (s, 3H); \(^{13}\text{C} \text{NMR} \) (400 MHz, \(\text{d}_6\text{-DMSO} \)) \(\delta \) 159.4, 146.3, 126.7, 125.8, 124.1, 100.0, 55.2; \text{HRMS} \) calcd for \(\text{C}_{16}\text{H}_{15}\text{N}_3\text{O}_3 \), 296.1035; found, 296.1019.

5-(4-methoxyphenyl)-3-(4-nitrophenyl)-1\(H \)-pyrazole (17). Purified by column chromatography (hexanes:ethyl acetate, 19:1). \(^1\text{H} \text{NMR} \) (400 Mhz, \(\text{CDCl}_3 \)) \(\delta \) 8.30 (d, \(J = 7.2 \) Hz, 2H), 8.08 (d, \(J = 7.2 \) Hz, 2H), 7.38 (m, 5H) 7.20 (d, \(J = 8.8 \) Hz, 2H), 6.87 (d, \(J = 8.8 \) Hz, 2H), 6.86 (s, 1H), 3.82 (s, 3H); \text{MS} \) calcd for \(\text{C}_{22}\text{H}_{17}\text{N}_3\text{O} \), 372.13; found, 372.04. \text{m.p.} 176-178°C (Lit. 178-179°C)\(^2\)

3-(4-pyridyl)-5-(4-methoxyphenyl)-1\(H \)-pyrazole (19). Crystallized from ethanol/water. \(^1\text{H} \text{NMR} \) (400 MHz, \(\text{d}_6\text{-DMSO} \)) \(\delta \) 13.53 (s, 1H), 8.63 (d, \(J = 4.8 \) Hz, 2H), 7.81 (d, \(J = 4.8 \) Hz, 2H), 7.77 (d, \(J = 8 \) Hz, 2H), 7.28 (s, 1H), 7.06 (d, \(J = 8 \) Hz, 2H), 3.81 (s, 3H); \(^{13}\text{C} \text{NMR} \) (400 MHz, \(\text{d}_6\text{-DMSO} \)) \(\delta \) 159.2, 150.2, 126.6, 119.4, 114.4, 99.9, 55.2; \text{MS} \) calcd for \(\text{C}_{15}\text{H}_{14}\text{N}_3\text{O} \), 252.11; found, 252.18.

3-(2-thienyl)-5-(4-methoxyphenyl)-1\(H \)-pyrazole (20). Crystallized from 2-propanol/water. \(^1\text{H} \text{NMR} \) (400 MHz, \(\text{d}_6\text{-DMSO} \), \(T = 70°C \)) \(\delta \) 12.98 (s, 1H), 7.71 (d, \(J = 6 \) Hz, 2H), 7.40 (b, 2H), 7.09 (s, 1H), 7.01 (d, \(J = 6.8 \) Hz, 2H), 6.83 (s, 1H), 3.80 (s, 3H); \(^{13}\text{C} \text{NMR} \) (400 MHz, \(\text{d}_6\text{-DMSO} \)) \(\delta \) 159.2, 146.8, 143.3, 137.1, 127.5, 126.6, 124.5,

123.5, 121.7, 114.4, 98.5, 55.2; HRMS calcd for C_{14}H_{13}N_{2}OS, 257.0749; found, 257.0742.

5-(4-methylphenyl)-3-phenyl-1-methylpyrazole (21a). Purified by column chromatography (hexanes:ethyl acetate, 24:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.81 (d, J = 7.2 Hz, 2H), 7.41-7.25 (m, 7H), 6.58 (s, 1H), 3.92 (s, 3H), 2.42 (s, 3H); 3 MS calcd for C$_{17}$H$_{16}$N$_2$, 249.13; found, 249.32.

3-(4-methylphenyl)-5-phenyl-1-methylpyrazole (21b). Purified by column chromatography (hexanes:ethyl acetate, 24:1). 1H NMR (400 MHz, CDCl$_3$) δ 7.73 (d, J = 8.4 Hz, 2H), 7.48-7.45 (m, 5H), 7.22 (d, J = 8.4 Hz, 2H), 6.58 (s, 1H), 3.92 (s, 3H), 2.37 (s, 3H); 3 MS calcd for C$_{17}$H$_{16}$N$_2$, 249.13; found, 249.27.

3-(4-methoxyphenyl)-4,5,6,7-tetrahydro-1H-indazole (22). Flash chromatography (2:1, dichloromethane:acetone). Analytical sample crystallized (0°C) from dichloromethane/hexanes. 1H NMR (400 MHz, CDCl$_3$) δ 7.55 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 3.82 (s, 3H), 2.68 (t, 2H), 2.63 (t, 2H), 1.82-1.76 (m, 4H); 13C NMR (400 MHz, CDCl$_3$) δ 158.9, 127.8, 125.5, 114.0, 112.4, 55.2, 28.4, 23.6, 22.3, 22.0; MS calcd for C$_{14}$H$_{17}$N$_2$O, 229.13; found, 229.37.

3-pentyl-4,5,6,7-tetrahydro-1\textit{H}-indazole (23). Flash chromatography (2:1, dichloromethane : acetone). 1H NMR (400 MHz, CDCl$_3$) δ 2.64 (t, 2H), 2.55 (t, 2H), 2.43 (t, 2H), 1.76 (quint, 4H), 1.61 (m, 2H), 1.31 (m, 4H), 0.88 (t, 3H); 13C NMR (400 MHz, CDCl$_3$) δ 144.3, 112.3, 31.6, 28.6, 25.8, 23.4, 23.0, 22.42, 22.4, 20.2, 13.9; MS calcd for C$_{12}$H$_{21}$N$_2$, 193.17; found, 193.67.

\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}

\textit{tert}-butyl 3-(4-methoxyphenyl)-1,4,6,7-tetrahydro-5\textit{H}-pyrazolo[4,3-c]pyridine-5-carboxylate (24). Flash chromatography (3:2, dichloromethane : acetone). Analytical sample crystallized from 2-propanol/water. 1H NMR (400 MHz, CDCl$_3$) δ 7.46 (d, J = 8.8 Hz, 2H), 6.90 (bd, 2H), 4.62 (s, 2H), 3.81 (s, 3H), 3.70 (b, 2H), 2.73 (t, 2H), 1.48 (s, 9H); 13C NMR (400 MHz, CDCl$_3$) δ 159.3, 155.0, 127.5, 114.3, 109.8, 80.1, 55.3, 41.6, 28.4; MS calcd for C$_{18}$H$_{24}$N$_3$O$_3$, 330.18; found, 330.17.

\begin{center}
\includegraphics[width=0.5\textwidth]{image}
\end{center}

3-(4-methoxyphenyl)-1,4,6,7-tetrahydropyrano[4,3-c]pyrazole (25). Flash chromatography (3:2, dichloromethane : acetone). Analytical sample crystallized from dichloromethane/hexanes. 1H NMR (400 MHz, CDCl$_3$) δ 7.39 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H), 4.88 (s, 2H), 3.98 (t, 2H), 3.84 (s, 3H), 2.83 (t, 2H); 13C NMR (400 MHz, CDCl$_3$) δ 159.3, 155.0, 127.5, 114.3, 109.8, 80.1, 55.3, 41.6, 28.4; MS calcd for C$_{18}$H$_{24}$N$_3$O$_3$, 330.18; found, 330.17.
MHz, CDCl₃) δ 159.5, 127.3, 123.9, 114.4, 111.0, 64.5, 64.2, 55.3, 23.7; MS calcd for
C₁₃H₁₅N₂O, 231.11; found, 230.96.
NMR Spectrum: Cl3
Instrument: Varian Inova400
Solvent: DMSO Temp: 25.0

S27
\[\text{HN-N} \text{-} \text{NMe} \text{-} \text{OMe} \]
NMR Spectrum: H1
Instrument: Varian inova400
Solvent: DMSO Temp: 25.4
ISID: bellerat Date: Feb 27 2006
NMR spectrum: H1
Instrument: Varian inova400
Solvent: CDCl3 Temp: 25.6
ISID: hellerat Date: Feb 14 2006

ppm
HN-N
N
Boc

OMe