Supporting Information

Rhodium-Catalyzed Allyl Transfer from Homoallyl Alcohols to Aldehydes via Retro-allylation Followed by Isomerization into Ketones

Yuko Takada, Sayuri Hayashi, Koji Hirano, Hideki Yorimitsu*, and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University,
Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Instrumentation and Materials

1H NMR (500 MHz) and 13C NMR (125.7 MHz) spectra were taken on a Varian UNITY INOVA 500 spectrometer. 1H NMR and 13C NMR spectra were obtained in CDCl$_3$ with tetramethylsilane as an internal standard. 19F NMR spectra were obtained in CDCl$_3$ with fluorotrichloromethane as an external standard. IR spectra were determined on a SHIMADZU FTIR-8200PC spectrometer. TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F$_{254}$. Silica gel (Wakogel 200 mesh) was used for column chromatography. The analyses were carried out at the Elemental Analysis Center of Kyoto University.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Xylene and dioxane were dried over slices of sodium. Chloro(1,5-cyclooctadiene)rhodium dimer and PMe$_3$ (1.0 M toluene solution) were purchased from Aldrich. P('Bu)$_3$ was obtained from Wako and diluted to prepare 1.0 M hexane solution. PMe$_3$ and P('Bu)$_3$ were stored strictly under argon.
Experimental Section

Procedure for Sequential Methallylation-isomerization of 4-Methoxybenzaldehyde (1d) (Table 1, entry 4)

[RhCl(cod)]_2 (6 mg, 0.0125 mmol) and Cs₂CO₃ (24 mg, 0.075 mmol) were placed in a reaction flask. Xylene (3.0 mL) and P(tBu)₃ (1.0 M hexane solution, 0.05 mL, 0.05 mmol) were added dropwise. The suspension was stirred for 10 min at room temperature. A solution of homoallyl alcohol 2a (170 mg, 1.0 mmol) in xylene (2.0 mL) and 4-methoxybenzaldehyde (1d, 69 mg, 0.5 mmol) were then added and the mixture was heated at reflux. After being stirred for 24 h, the resulting mixture was poured into water (10 mL). Extraction with hexane/ethyl acetate (5:1) followed by silica gel column purification afforded 3-methyl-1-(4-methoxyphenyl)-1-butanone (3d, 75 mg, 0.39 mmol) in 77% yield.

Procedure for Crotylation of Benzaldehyde (1a) (Table 3, entry 1)

[RhCl(cod)]_2 (6 mg, 0.0125 mmol) and Cs₂CO₃ (24 mg, 0.075 mmol) were placed in a reaction flask. Dioxane (3.0 mL) and PMe₃ (1.0 M toluene solution, 0.05 mL, 0.05 mmol) were added dropwise. The suspension was stirred for 10 min at room temperature. A solution of homoallyl alcohol 2b (170 mg, 1.0 mmol) in dioxane (2.0 mL) and benzaldehyde (1a, 53 mg, 0.5 mmol) were then added and the mixture was heated at reflux. After being stirred for 8 h, the resulting mixture was quenched with water (10 mL). Extraction and purification provided 2-methyl-1-phenyl-3-buten-1-ol (7a, 48 mg, 0.29 mmol) in 58% yield (erythro/threo = 49:51).
Characterization Data.

1H NMR spectral charts for known compounds and 1f were attached in the last part. Characterization data for new compounds were shown below.

1-(4-Trifluoromethylphenyl)-3-methyl-1-butanone (3c): IR (neat) 2958, 1684, 1662, 1598, 1448, 1404, 1367, 1277, 1211, 938, 926, 743, 718, 699, 655 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 1.02 (d, $J = 7.0$ Hz, 6H), 2.27–2.35 (m, 1H), 2.87 (d, $J = 7.0$ Hz, 2H), 7.74 (d, $J = 8.0$ Hz, 2H), 8.06 (d, $J = 8.0$ Hz, 2H); 13C NMR (CDCl$_3$) δ 22.69, 25.00, 47.72, 125.63 (q, $J = 3.65$ Hz, 1C), 128.39, 130.23, 134.04, 139.93, 199.19; 19F NMR (CDCl$_3$) δ –63.65.

Found: C, 62.85%; H, 5.61%. Calcd for C$_{12}$H$_{13}$F$_3$O: C, 62.60%; H, 5.69%.

1-(4-Benzoylphenyl)-3-methyl-1-butanone (3f): IR (neat) 2958, 1684, 1662, 1598, 1448, 1404, 1367, 1277, 1211, 938, 926, 743, 718, 699, 655 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 1.03 (d, $J = 6.5$ Hz, 6H), 2.29–2.38 (m, 1H), 2.90 (d, $J = 6.5$ Hz, 2H), 7.52 (tt, $J = 7.5$, 1.5 Hz, 2H), 7.64 (tt, $J = 7.5$, 1.5 Hz, 1H), 7.82 (dt, $J = 8.0$, 1.5 Hz, 2H), 7.87 (dt, $J = 8.0$, 1.5 Hz, 2H), 8.06 (dt, $J = 8.0$, 1.5 Hz, 2H); 13C NMR (CDCl$_3$) δ 22.73, 25.09, 47.82, 127.93, 128.45, 130.04, 130.10, 132.96, 136.91, 139.86, 141.06, 196.03, 199.74. Found: C, 81.05%; H, 6.84%. Calcd for C$_{18}$H$_{18}$O$_2$: C, 81.17%; H, 6.81%.

1-(4-Methoxycarbonylphenyl)-3-methyl-1-butanone (3g): IR (neat) 3674, 2956, 1722, 1683, 1504, 1436, 1407, 1365, 1279, 1198, 1109, 763, 695 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 1.01 (d, $J = 6.5$ Hz, 6H), 2.27–2.35 (m, 1H), 2.88 (d, $J = 7.0$ Hz, 2H), 3.96 (s, 3H), 8.01 (d, $J = 8.5$ Hz, 2H), 8.13 (d, $J = 8.5$ Hz, 2H); 13C NMR (CDCl$_3$) δ 22.72, 25.01, 47.80, 52.46, 127.97, 129.79, 133.63, 140.54, 166.28, 199.72. Found: C, 71.00%; H, 7.53%. Calcd for C$_{13}$H$_{16}$O$_3$: C, 70.89%; H, 7.32%.
2-Methyl-4-pentadecanone (3h): IR (neat) 2927, 2855, 1717, 1468, 1410, 1367, 1287, 1144, 1040, 721 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 0.89 (t, $J = 7.0$ Hz, 3H), 0.92 (d, $J = 6.5$ Hz, 6H), 1.26–1.31 (m, 16H), 1.55–1.59 (m, 2H), 2.15 (septet, $J = 6.5$ Hz, 1H), 2.28 (d, $J = 7.5$ Hz, 2H), 2.37 (t, $J = 7.5$ Hz, 2H); 13C NMR (CDCl$_3$) δ 14.12, 18.24, 22.60, 22.68, 23.78, 24.59, 29.25, 29.32, 29.42, 29.47, 29.60, 31.90, 43.38, 51.81, 211.39. Found: C, 79.96; H, 13.52%. Calcd for C$_{16}$H$_{32}$O: C, 79.93; H, 13.41%.

1-(4-Trifluoromethylphenyl)-2-methyl-1-butane (4c): IR (neat) 2971, 2937, 2880, 1692, 1463, 1410, 1326, 1268, 1217, 1170, 1132, 1114, 1068, 1017, 974, 857, 592 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 0.94 (t, $J = 7.5$ Hz, 3H), 1.22 (d, $J = 7.0$ Hz, 3H), 1.48–1.56 (m, 1H), 1.81–1.89 (m, 1H), 3.37–3.44 (m, 1H), 7.75 (d, $J = 8.0$ Hz, 2H), 8.06 (d, $J = 8.0$ Hz, 2H); 13C NMR (CDCl$_3$) δ 11.67, 16.49, 26.46, 42.52, 123.62 (q, $J = 272.5$ Hz), 125.68 (q, $J = 3.8$ Hz), 128.53, 134.1 (q, $J = 32.7$ Hz), 139.49, 203.44; 19F NMR (CDCl$_3$) δ –63.65. Found: C, 62.36; H, 5.39%. Calcd for C$_{12}$H$_{13}$F$_3$O: C, 62.60; H, 5.69%.

1-(4-Benzoylphenyl)-2-methyl-1-butane (4f): IR (neat) 2966, 2934, 2876, 1684, 1662, 1598, 1448, 1404, 1277, 1216, 974, 938, 926, 700 cm$^{-1}$; 1H NMR (CDCl$_3$) δ 0.96 (d, $J = 7.0$ Hz, 3H), 1.24 (d, $J = 7.0$ Hz, 3H), 1.54 (septet, $J = 7.0$ Hz, 1H), 1.87 (septet, $J = 7.0$ Hz, 1H), 3.44 (septet, $J = 7.0$ Hz, 1H), 7.52 (t, $J = 7.5$ Hz, 2H), 7.64 (t, $J = 7.5$ Hz, 1H), 7.83 (d, $J = 8.0$ Hz, 2H), 7.88 (d, $J = 8.0$ Hz, 2H), 8.05 (d, $J = 8.5$ Hz, 2H); 13C NMR (CDCl$_3$) δ 11.73, 16.58, 26.53, 42.56, 128.07, 128.46, 130.10, 130.11, 132.96, 136.92, 139.42, 141.01, 196.03, 203.99. Calcd for C$_{18}$H$_{18}$O$_2$: C, 81.17; H, 6.81%.

1-(4-Methoxycarbonylphenyl)-2-methyl-1-butane (4g): IR (neat) 2936, 2877, 1729, 1683, 1572, 1504, 1436, 1407, 1373, 1280, 1215, 1182, 1109, 1006, 956, 870, 826, 788,
722 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) \(\delta\) 0.93 (t, \(J = 7.5\) Hz, 3H), 1.21 (d, \(J = 7.0\) Hz, 3H), 1.47-1.55 (m, 1H), 1.80-1.88 (m, 1H), 3.41 (septet, \(J = 7.0\) Hz, 1H), 3.96 (s, 3H), 8.00 (dt, \(J = 8.5\), 2.0 Hz, 2H), 8.13 (dt, \(J = 8.5\), 2.0 Hz, 2H); \(^1\)C NMR (CDCl\(_3\)) \(\delta\) 11.67, 16.52, 26.48, 42.53, 52.44, 128.10, 129.83, 133.55, 140.09, 166.27, 203.98. Found: C, 70.77; H, 7.25%.

Calcd for C\(_{13}\)H\(_{16}\)O\(_3\): C, 70.89; H, 7.32%.

1-(4-Benzoylphenyl)-2-methyl-3-buten-1-ol (7f) (Mixture of erythro and threo isomers):
IR (neat) 3446, 2973, 2874, 1645, 1599, 1579, 1448, 1413, 1280, 1178, 1150, 1100, 1001, 924, 844, 749, 702 cm\(^{-1}\); \(^1\)H NMR (CDCl\(_3\)) For erythro isomer: \(\delta\) 1.02 (d, \(J = 6.5\) Hz, 3H), 2.06 (d, \(J = 3.5\) Hz, 1H), 2.65 (septet, \(J = 7.0\) Hz, 1H), 4.76 (t, \(J = 4.0\) Hz, 1H), 5.10–5.15 (m, 2H), 5.77–5.85 (m, 1H), 7.44–7.47 (m, 2H), 7.48–7.52 (m, 2H), 7.61 (tt, \(J = 7.0\), 1.0 Hz, 1H), 7.80–7.82 (m, 4H); For threo isomer: \(\delta\) 0.95 (d, \(J = 6.5\) Hz, 3H), 2.28 (d, \(J = 2.5\) Hz, 1H), 2.53 (septet, \(J = 7.0\) Hz, 1H), 4.48 (dd, \(J = 7.5\), 2.5 Hz, 1H), 5.23–5.26 (m, 2H), 5.77–5.85 (m, 1H), 7.44–7.57 (m, 2H), 7.48–7.52 (m, 2H), 7.61 (tt, \(J = 7.0\), 1.0 Hz, 1H), 7.80–7.82 (m, 4H); \(^1\)C NMR (CDCl\(_3\)) For mixture: \(\delta\) 13.51, 14.12, 16.44, 22.65, 30.95, 31.58, 44.56, 46.41, 76.59, 77.33, 116.23, 117.60, 126.34, 126.74, 128.26, 129.98, 130.01, 130.03, 130.11, 130.33, 132.37, 132.40, 136.54, 136.88, 137.62, 137.65, 139.80, 139.92, 147.05, 147.20, 196.49. Found: C, 81.45; H, 6.88%. Calcd for C\(_{18}\)H\(_{18}\)O\(_2\): C, 81.17; H, 6.81%.
Chart 9. 1H NMR Spectrum of 4f
Chart 10. 1H NMR Spectrum of 7a (Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 59, 6620–6628.)
Chart 15. 1H NMR Spectrum of 7g (Takahara, J.; Masuyama, Y.; Kurusu, Y. J. Am. Chem. Soc. 1992, 114, 2577–2586.)