Supporting Information:

Photochemical Reduction of Carbon Dioxide Using a CN-modified \textit{fac}-Mn(bpy)(CO)$_3$ Catalyst

Po Ling Cheung
Department of Chemistry and Biochemistry
University of California, San Diego, California 92093, United States

Charles W. Machan
Department of Chemistry and Biochemistry
University of California, San Diego, California 92093, United States

Aramice Y. S. Malkhasian
Chemistry Department
King Abdulaziz University, Jeddah, 21589, Saudi Arabia

Jay Agarwal
Center for Computational Quantum Chemistry
University of Georgia, Athens, Georgia 30602, United States

Clifford P. Kubiak*
Department of Chemistry and Biochemistry
University of California, San Diego, California 92093, United States
* - ckubiak@ucsd.edu
Figure S1. The linear fit lines of HCO₂H TON vs. catalyst (complex 1) concentration shows high linearity for both 15 h and 6 h irradiation.
Scan-Rate Dependence Data for Mn(CN) (bpy)(CO)$_3$

Figure S2. Linear plots of anodic and cathodic currents against square root of scan rate of CV for 1.0 mM of complex 1 in 0.1 M TBAPF$_6$ in dry N,N-DMF under Ar.
Figure S3. Infrared spectra of Mn(bpy)(CO)$_3$(CN) (1) at controlled potentials in dry MeCN-TEOA under CO$_2$. Enlarged spectra of the CO$_2$ peak at around 2337 cm$^{-1}$ shows the decrease in CO$_2$ concentration under catalytic conditions (ca. –1.9 V vs Fc/Fc+) over the course of 5 min. Conditions: 4 mM 1 in 0.1 M TBAPF$_6$/MeCN-TEOA (4 : 1); glassy carbon working electrode, Pt counter electrode, Ag pseudoreference electrode.
Figure S4. Infrared spectra of Mn(bpy)(CO)$_3$(CN) (1) taken at controled potentials in dry N,N-DMF-TEOA (4:1) under CO$_2$. Enlarged spectra of the CO$_2$ peak at around 2337 cm$^{-1}$ shows the decrease in CO$_2$ concentration at catalytic potentials (ca. -1.9 V vs Fc/Fc+) over the course of 5 min. Conditions: 4 mM 1 in 0.1 M TBAPF$_6$/N,N-DMF-TEOA (4 : 1); glassy carbon working electrode, Pt counter electrode, Ag pseudoreference electrode.
Figure S5. A sample 1H NMR spectrum of the worked-up photocatalytic reaction solution of 1 mM 1 under CO$_2$ after 15 h irradiation. The solvent was a N,N-DMF-TEOA (4 : 1 v/v) in CD$_3$CN solution. The ferrocene reference is at 4.13 ppm while formate is observed at 8.50 ppm.
UV-Vis Spectra

Figure S6. UV-Vis spectra of Mn(bpy)(CO)$_3$(CN) (A) in dry MeCN with and without Vkd base in the absence or presence of TEOA; and (B) in dry N,N-DMF with and without Vkd base in the absence or presence of TEOA. Upon the addition of Vkd base to solution in the absence of TEOA, the band at ~370 nm diminished in intensity and broadened. There was a slight diminishment observed with the addition of TEOA only, likely due to a decrease in the concentration of 1 from dilution.