Supporting Information for

Synthesis, Structure, and Characterization of Novel Two- and Three-Dimensional Vanadates:

$\text{Ba}_{2.5}(\text{VO}_2)_3(\text{SeO}_3)_4\cdot\text{H}_2\text{O}$ and $\text{La}(\text{VO}_2)_3(\text{TeO}_6)_3\cdot3\text{H}_2\text{O}$

T. Sivakumar, Kang Min Ok, and P. Shiv Halasyamani*

Department of Chemistry and Center for Materials Chemistry, University of Houston, 136 Fleming Building, Houston, Texas 77204-5003

Figure S1. ORTEP representation (50 % probability ellipsoids) of $\text{Ba}_{2.5}(\text{VO}_2)_3(\text{SeO}_3)_4\cdot\text{H}_2\text{O}$

Figure S2. ORTEP representation (50 % probability ellipsoids) of $\text{La}(\text{VO}_2)_3(\text{TeO}_6)_3\cdot3\text{H}_2\text{O}$

Figure S3. ORTEP representation of 12- and 8-membered rings in $\text{Ba}_{2.5}(\text{VO}_2)_3(\text{SeO}_3)_4\cdot\text{H}_2\text{O}$. 50% probability ellipsoids (O in red, V in blue, and Se in green) are depicted. Note the 12-membered rings are in eclipsed conformation.

Figure S4. ORTEP representation of the TeO$_6$ and VO$_4$ polyhedra in $\text{La}(\text{VO}_2)_3(\text{TeO}_6)_3\cdot3\text{H}_2\text{O}$. 50% probability ellipsoids (O in red, V in blue, and Te in green) are depicted. Note that each TeO$_6$ polyhedron is surrounded by six VO$_4$ tetrahedra.

Figure S5. Calculated (a) and observed (b) powder X-ray diffraction (XRD) patterns for $\text{Ba}_{2.5}(\text{VO}_2)_3(\text{SeO}_3)_4\cdot\text{H}_2\text{O}$. XRD pattern for anhydrous $\text{Ba}_{2.5}(\text{VO}_2)_3(\text{SeO}_3)_4$, obtained by dehydration of $\text{Ba}_{2.5}(\text{VO}_2)_3(\text{SeO}_3)_4\cdot\text{H}_2\text{O}$ at 340 °C for 1h, is shown in the top panel (c).
Figure S6. Powder X-ray diffraction patterns for (a) La(VO₂)₃(TeO₆).3H₂O (calculated) (b) La(VO₂)₃(TeO₆).3H₂O (observed) (c) anhydrous La(VO₂)₃(SeO₆), obtained by dehydration of La(VO₂)₃(SeO₆).3H₂O at 350 ºC, and (d) products obtained by calcining La(VO₂)₃(SeO₆).3H₂O at 600 ºC showing LaVO₄ is the major phase.

Table S1. Powder XRD data (indexing using PROSZKI program) for anhydrous La(VO₂)₃(SeO₆)

Figure S7. IR spectra for Ba₂.₅(VO₂)₃(SeO₃)₄.H₂O

Figure S8. IR spectra for La(VO₂)₃(SeO₆).3H₂O

Figure S9. Raman spectra for (a) Ba₂.₅(VO₂)₃(SeO₃)₄.H₂O, and (b) La(VO₂)₃(SeO₆).3H₂O

Figure S10. Diffuse reflectance spectra for Ba₂.₅(VO₂)₃(SeO₃)₄.H₂O, and La(VO₂)₃(SeO₆).3H₂O

Figure S11. Thermogravimetric analysis curve for Ba₂.₅(VO₂)₃(SeO₃)₄.H₂O

Figure S12. Nitrogen Adsorption Isotherm and BET plot for Ba₂.₅(VO₂)₃(SeO₃)₄.

Figure S13. Thermogravimetric analysis curve for La(VO₂)₃(SeO₆).3H₂O
Figure S1. ORTEP representation (50 % probability ellipsoids) of Ba$_{2.5}$(VO$_2$)$_3$(SeO$_3$)$_4$.H$_2$O
Figure S2. ORTEP representation (50 % probability ellipsoids) of La(VO$_2$)$_3$(TeO$_6$)$_3$H$_2$O
Figure S3. ORTEP representation of 12- and 8-membered rings in Ba$_{2.5}$(VO$_2$)$_3$(SeO$_3$)$_4$.H$_2$O. 50% probability ellipsoids (O in red, V in blue, and Se in green) are depicted. Note the 12-membered rings are in eclipsed conformation.
Figure S4. ORTEP representation of the TeO$_6$ and VO$_4$ polyhedra in La(VO$_2$)$_3$(TeO$_6$)$_3$H$_2$O. 50% probability ellipsoids (O in red, V in blue, and Te in green) are depicted. Note that each TeO$_6$ polyhedron is surrounded by six VO$_4$ tetrahedra.
Figure S5. Calculated (a) and observed (b) powder X-ray diffraction (XRD) patterns for Ba$_{2.5}$(VO$_2$)$_3$(SeO$_3$)$_4$.H$_2$O. XRD pattern for anhydrous Ba$_{2.5}$(VO$_2$)$_3$(SeO$_3$)$_4$, obtained by dehydration of Ba$_{2.5}$(VO$_2$)$_3$(SeO$_3$)$_4$.H$_2$O at 340 °C for 1h, is shown in the top panel (c).
Figure S6. Powder X-ray diffraction patterns for (a) La(VO$_2$)$_3$(TeO$_6$)$_3$H$_2$O (calculated) (b) La(VO$_2$)$_3$(TeO$_6$)$_3$H$_2$O (observed) (c) anhydrous La(VO$_2$)$_3$(TeO$_6$)$_3$, obtained by dehydration of La(VO$_2$)$_3$(TeO$_6$)$_3$H$_2$O at 350 ºC, and (d) products obtained by calcining La(VO$_2$)$_3$(TeO$_6$)$_3$H$_2$O at 600 ºC showing LaVO$_4$ 1 is the major phase.

1JCPDS card no. 70-0216
Table S1. Powder XRD data (indexing using PROSZKI1 program) for anhydrous La(VO\textsubscript{2})\textsubscript{3}(TeO\textsubscript{6})

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>d\textsubscript{obs}</th>
<th>d\textsubscript{cal}</th>
<th>I\textsubscript{obs}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4.642</td>
<td>4.644</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4.623</td>
<td>4.628</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3.773</td>
<td>3.781</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
<td>3.282</td>
<td>3.278</td>
<td>79</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>8</td>
<td>2.686</td>
<td>2.684</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2.668</td>
<td>2.675</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>8</td>
<td>2.320</td>
<td>2.322</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8</td>
<td>2.077</td>
<td>2.075</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2.070</td>
<td>2.071</td>
<td>24</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>12</td>
<td>1.757</td>
<td>1.757</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1.751</td>
<td>1.749</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
<td>1.639</td>
<td>1.639</td>
<td>14</td>
</tr>
</tbody>
</table>

*Space group R3\textsubscript{c}; a = b = 9.256(5) Å, c = 22.79(2) Å and V = 1691(2) Å3.

Figure S7. IR spectra for Ba$_{2.5}$(VO$_2$)$_3$(SeO$_3$)$_4$.H$_2$O

Figure S8. IR spectra for La(VO$_2$)$_3$(TeO$_6$)$_3$.H$_2$O
Figure S9. Raman spectra for (a) $\text{Ba}_{2.5}(\text{VO}_2)_3(\text{SeO}_3)_4\cdot\text{H}_2\text{O}$, and (b) $\text{La}(\text{VO}_2)_3(\text{TeO}_6)_3\cdot3\text{H}_2\text{O}$
Figure S10. Diffuse reflectance spectra for $\text{Ba}_{2.5}(\text{VO}_2)_3(\text{SeO}_3)_4\cdot\text{H}_2\text{O}$, and $\text{La}(\text{VO}_2)_3(\text{TeO}_6)\cdot3\text{H}_2\text{O}$
Figure S11. Thermogravimetric analysis curve for Ba$_{2.5}$(VO$_2$)$_3$(SeO$_3$)$_4$.H$_2$O
Figure S12. Nitrogen Adsorption Isotherm and BET plot for Ba$_{2.5}$(VO$_2$)$_3$(SeO$_3$)$_4$.

- Isotherm
- BET Plot
- Y-Intercept = 4.071
- Surface area = 2.07 m2/g
Figure S13. Thermogravimetric analysis curve for La(VO₂)₃(TeO₆).3H₂O