Supporting Information for:

Na$_2$Te$_3$Mo$_3$O$_{16}$: A New Molybdenum Tellurite with Second-Harmonic Generating and Pyroelectric Properties

Eun Ok Chi, Kang Min Ok, Yetta Porter, and P. Shiv Halasyamani

Department of Chemistry and Center for Materials Chemistry, University of Houston, 136 Fleming Building, Houston, Texas 77204-5003

S1. Calculated and observed powder X-ray diffraction pattern for Na$_2$Te$_3$Mo$_3$O$_{16}$
S2. Thermogravimetric analysis data for Na$_2$Te$_3$Mo$_3$O$_{16}$
S3. Pyroelectric data for Na$_2$Te$_3$Mo$_3$O$_{16}$
S4. Ferroelectric data for Na$_2$Te$_3$Mo$_3$O$_{16}$
S5. Phase-matching curve and variable temperature SHG data for Na$_2$Te$_3$Mo$_3$O$_{16}$
S1. Calculated and observed powder X-ray diffraction pattern for $\text{Na}_2\text{Te}_3\text{Mo}_3\text{O}_{16}$
S2. Thermogravimetric analysis diagram for Na₂Te₃Mo₃O₁₆
S3. Pyroelectric data for Na$_2$Te$_3$Mo$_3$O$_{16}$

![Graph showing pyroelectric data for Na$_2$Te$_3$Mo$_3$O$_{16}$. The graph plots P (µC/cm2) vs. T (°C) with data points and a fitted curve. The table provides the data and parameters for the fit.

- **Data**: Data1_B
- **Model**: ExpDec1
- **Equation**: $y = A1 \cdot \exp(-x/t1) + y0$
- **Chi2/DoF**: 1.4629×10^{-7}
- **R2**: 0.98511
- **y0**: 0.17933 ± 0.00017
- **A1**: 0.02857 ± 0.00257
- **t1**: 33.91555 ± 0.55096
S4. Ferroelectric data for Na$_2$Te$_3$Mo$_3$O$_{16}$. Note that the ‘gap’ in the curve is attributable to dielectric losses and not ferroelectric hysteresis.
S4. Phase-matching curve and variable temperature SHG data for Na$_2$Te$_3$Mo$_3$O$_{16}$