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Material and Methods:

"H NMR spectra were recorded at 300 and 400 MHz, and BC NMR were recorded at 100 MHz, VTU
298.0 °K. Chemical shifts were reported in parts per million. The residual solvent peak was used as an
internal reference.

For analytical thin-layer chromatography, silica gel ready-foils was used, respectively, being developed
with 254 nm UV light and/or spraying with a solution of vainillin in EtOH:H,SO4:AcOH (15:1:1.3) and
heating at 200 °C. Column chromatography was performed using silica gel (0.015-0.04 mm) and »n-
hexane/EtOAc solvent systems. All reagents were obtained from commercial sources and used without
further purification. Solvents were dried and distilled before use.

General Procedures:

General Procedure for the Silylation of homopropargylic alcohols. n-BuLi (1.67 M in hexane, 2
equiv) was added to THF (2 mL/mmoL) at —40 °C. A solution of 1-alkyl-but-3-yn-1-ol or 1,2-dialkyl-
but-3-yn-1ol (1 equiv) in THF (30 mL/mmol) was added dropwise to the solution over 10 min. The
mixture was warmed to room temperature and stirred for 20 min., then cooled to —40 °C again.
Chlorotrimethylsilane (TMSCI) (1 equiv) was added to the mixture over 10 min. The reaction mixture
was warmed to room temperature and stirred for 1 h, then poured into iced 1 M aqueous HCI. The
aqueous layer was extracted with Et;0O. The combined organic layer was washed with brine, dried, and
evaporated. The residual crude product was purified via silica gel chromatography.

General Procedure for Desilylation of Tetra- and Pentasubstituted Trimethylsilyl-dihydropyrans.
A solution of halovinylsilane (1 equiv), HI (57% aqueous solution)/CH,C1,/H,0, (1:1:1, 0.1 M) was
heated under reflux for one week. The mixture was washed with of conc. aqueous Na,S,03 solution
and extracted with CH,C1,. The combined organic layers were dried over magnesium sulfate, and the
solvent was removed under reduced pressure. This crude reaction mixture was purified by flash silica
gel column chromatography (n-hexane/EtOAc solvent systems).

Starting Materials of Table 1:

1-phenyl-5-(trimethylsilyl)pent-4-yn-2-ol (Table 1, entry 7)' and 1-cyclohexyl-4-(trimethylsilyl)but-
3-yn-1-ol (Table 1, entries 8 and 9),> (25*,3S5*)-3-methyl-5-(trimethylsilyl)pent-4-yn-2-ol (Table 1,
entry 11).°

Entries 1-5: S-(trimethylsilyl)pent-4-yn-2-ol: Prepared following the general procedure of silylation of
homopropargylic alcohols.

Entry 6: 6-(trimethylsilyl)hex-5-yn-3-ol: BuLi (1.67 M in hexane, 30 mL, 2 equiv) was added to THF
(200 mL) at —40 °C. A solution of 5-hexyn-3-ol’ (3 g, 0.031 mol) in THF (50 mL) was dropwise added
to the solution over 10 min. The mixture was warmed to room temperature and stirred for 1 h, then
cooled to —40 °C again. Chlorotrimethylsilane (TMSCI) (4 mL, 1 equiv) was added to the mixture over
10 min. The work-up of the reaction was realized following the general conditions described above.
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'H NMR (CDCls, 300 MHz) & 3.60 (m, 1H), 3.55 (m, 1H), 2.35 (dd, J=4.7& 16.8 Hz, 1H), 2.29 (dd, J
=6.9 & 16.8 Hz, 1H), 1.50 (t, /= 7.3 Hz, 3H), 0.93 (m, 2H), 0.09 (s, 9H). BC NMR (CDCls, 75 MHz)
6 103.0 (C), 87.3 (C), 71.0 (CH), 28.8 (CHy), 28.2 (CH), 9.7 (CH3), 0.1 (3CHj3). FTIR (CHCI;):
3364.3, 2962.2, 2934.2, 2175.9, 1418.5, 1249.9, 844.0 cm™’. Elemental analysis: CoHsOSi. caled.: C
63.47 H 10.65; found: C 63.46 H 10.32.

(25*,3R *)-3-methyl-5-(trimethylsilyl)pent-4-yn-2-0l (Table 1, entry 10): To a

P -~ solution of trimethylsilylacetylene (1.9 mL, 13.4 mmol) in Et,O (55 mL) at =78 °C
~sj =~ oH Wwas added n-BuLi (2.5 M in hexane, 5.35 mL, 13.4 mmol) over 20 min. After
7\ stirring at —78 °C for additional 20 min, trimethylalumina (2.0 M in toluene, 6.7 mL,

13.4 mmol) was added via syringe pump over 40 min. The reaction was stirred at —78 °C for 30 min, —
45 °C for 30 min, and then cooled to —78 °C, whereupon cis-(2R*,35%*)-2,3-epoxybutane (1 mL, 11.2
mmol) in Et;O (6 mL) was added over 15 min. After stirring for 15 min at the same temperature, boron
trifluoride diethylether (1.56 mL, 12.3 mmol) in Et,O (6 mL) was added slowly along the walls of the
flask over 15 min. The content was stirred at —78 °C for 1 h, whereupon methanol (20 mL) was added
along the walls of the flask. The reaction was allowed to warm to 0 °C over 25 min before saturated
aqueous NH4Cl (20 mL) was added. After stirring at room temperature for additional 30 min, the
content was diluted with water, extracted with diethyl ether, dried over Na,SO., filtered, and
concentrated. The residue was purified by column chromatography on silica gel to give 2.0 g product as
clear volatile oil (100 % yield) after removing solvent by distillation.

'H NMR (CDCls, 300 MHz) & 3.57 (qui, J = 6.1 Hz, 1H), 2.42 (qui, J = 7.0 Hz, 1H), 1.83 (brs, 1H),
1.17 (d, J = 6.2 Hz, 3H), 1.12 (d, J = 7.0 Hz, 3H), 0.10 (s, 9H). >*C NMR (CDCl;, 75 MHz) & 107.4
(©), 87.2 (C), 70.3 (CH), 35.5 (CH), 20.4 (CH3), 16.8 (CHs), 1.0 (3CH3). FTIR (CHCls): 3360.3,
2965.7, 1451.0, 1248.3, 890.1 cm’!. Elemental analysis: CoH3OSi . caled.: C 63.47 H 10.65; found: C
63.40 H 10.50.

Final products :

(Cis-4-chloro-2-isobutyl-6-methyl-5,6-dihydro-2 H-pyran-3-yl)trimethylsilane (Table 1, entry 1):
'H NMR (CDCls, 300 MHz) & 4.30 (m, 1H), 3.55 (m, 1H), 2.32 (ddd, J=3.3, 5.7 & 13.7 Hz, 1H), 2.20
(ddd, J=2.7,2.7 & 11.6 Hz, 1H), 1.95 (m, 1H), 1.35 (m, 2H), 1.18 (d, /= 6.2 Hz, 3H), 0.92 (d, /= 6.6
Hz, 6H), 0.23 (s, 9H). BC NMR (CDCls, 75 MHz) 6 138.3 (C), 135.9 (C), 76.8 (CH), 69.2 (CH), 45.2
(CH,), 43.5 (CH>), 24.5 (CH), 24.0 (CH3), 21.2 (CH3), 20.9 (CH3), -0.1 (3CH3). FTIR (CHCls): 2957.2,
1605.5,1251.0, 837.8 cm’!. Elemental analysis: C,;H,sCIOSi . caled.: C 59.85 H 9.66; found: C 59.76 H
9.34.

(Trans-4-chloro-2-isobutyl-6-methyl-5,6-dihydro-2 H-pyran-3-yl)trimethylsilane (Table 1, entry
1): '"H NMR (CDCl3, 300 MHz) § 4.34 ( d, J = 5.6 Hz, 1H), 3.90 (m, 1H), 2.24 (m, 2H), 1.82 (m, 1H),
1.66 (ddd, J=3.7,7.7 & 11.4 Hz, 1H), 1.18 (d, J= 6.1 Hz, 3H), 1.12 (m, 1H), 0.92 (d, /= 5.4 Hz, 6H),
0.20 (s, 9H). °C NMR (CDCls, 75 MHz) & 137.6 (C), 135.9 (C), 75.0 (CH), 62.3 (CH), 42.1 (CH,),
41.5 (CHy), 24.7 (CH), 23.7 (CHj3), 21.4 (CHs), 21.2 (CHj3), -0.2 (3CHj3). FTIR (CHCls): 2956.2,
1613.2, 1249.7, 841.8 cm’'. Elemental analysis: C,3H,sCIOSi. calced.: C 59.85 H 9.66; found: C 59.80 H
9.45.

(Cis-4-chloro-2-cyclohexyl-6-methyl-5,6-dihydro-2H-pyran-3-yl)trimethylsilane (Table 1, entry
2): '"H NMR (CDCls, 300 MHz) & 4.17 (s, 1H), 3.54 (m, 1H), 2.16 (m, 2H), 1.78-1.38 (m, 9H), 1.21 (m,
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5H), 0.21 (s, 9H). BC NMR (CDCl3, 75 MHz) & 138.1 (C), 134.0 (C), 81.7 (CH), 68.6 (CH), 43.3
(CH2), 42.7 (CH), 30.3 (CHy), 26.9 (CH,), 26.2 (2CH,), 24.5 (2CH,), 20.7 (CH3), -0.2 (3CH3). FTIR
(CHCI3): 2930.8, 1606.5, 1250.7, 1118.5, 840.9 cm’’. Elemental analysis: C,sH,,;CIOSi. caled.: C 62.79
H 9.49; found: C 62.80 H 9.15.

(Cis-2-(sec-butyl)-4-chloro-6-methyl-5,6-dihydro-2H-pyran-3-yl)trimethylsilane (Table 1, entry
4): '"H NMR (CDCls, 300 MHz) & 4.29 (s, 1H), 3.51 (m, 1H), 2.17 (m, 2H), 1.45 (m, 3H), 1.11 (d, J =
6.1 Hz, 3H), 0.88 (t, J = 7.4 Hz, 3H), 0.68 (d, J = 6.4 Hz, 3H), 0.18 (s, 9H). °C NMR (CDCl;, 75
MHz) 6 138.3 (C), 134.5 (C), 79.8 (CH), 68.5 (CH), 43.4 (CH,), 38.9 (CH), 26.8 (CH,), 20.6 (CH),
12.2 (CH3), 12.0 (CH;), -0.1 (3CH3). FTIR (CHClL3): 2967.0, 1604.8, 1250.5, 840.1 cm™'. Elemental
analysis: C,sH,,ClOSi. caled.: C 59.85 H 9.66; found: C 59.83 H 9.35.

(Cis-4-bromo-2-(sec-butyl)-6-methyl-5,6-dihydro-2H-pyran-3-yl)trimethylsilane (Table 1, entry
5): '"H NMR (CDCls, 300 MHz) & 4.32 (s, 1H), 3.53 (sep, J = 6.1 Hz, 1H), 2.33 (m, 2H), 1.57-1.34 (m,
4H), 1.09 (d, J = 6.1 Hz, 3H), 0.87 (t, J = 7.4 Hz, 3H), 0.81 (d, J = 6.5 Hz, 3H), 0.20 (s, 9H). °C NMR
(CDCls, 75 MHz) & 138.2 (C), 129.2 (C), 80.9 (CH), 69.0 (CH), 46.6 (CH>), 38.8 (CH), 26.8 (CH>),
20.5 (CH3), 12.2 (CH3), 12.0 (CH3), -0.1 (3CH3). FTIR (CHCls): 2966.0, 1600.2, 1250.6, 841.0 cm’.
Elemental analysis: C;sH»,BrOSi. caled.: C 51.14 H 8.25; found: C 51.15 H 8.21.

(Cis-4-chloro-2-cyclohexyl-6-ethyl-5,6-dihydro-2H-pyran-3-yl)trimethylsilane (Table 1, entry 6):
'H NMR (CDCl;, 300 MHz) § 4.10 (s, 1H), 3.29 (m, 1H), 2.15 (m, 2H), 1.69-1.38 (m, 9H), 1.27 (m,
3H), 0.87 (t, J = 7.4 Hz, 3H), 0.17 (s, 9H). °C NMR (CDCl;, 75 MHz) § 138.3 (C), 134.2 (C), 81.7
(CH), 73.7 (CH), 42.8 (CH), 41.3 (CH»), 30.3 (CH>), 28.0 (CH,), 26.9 (CH,), 26.2 (2CH,), 24.5 (CH»),
9.3 (CHs), -0.3 (3CH3). FTIR (CHCLs): 2931.9, 1605.6, 1249.2, 840.8 cm™. Elemental analysis:
CisHClOSi. caled.: C 63.86 H 9.71; found: C 63.90 H 9.40.

(Cis-6-benzyl-4-chloro-2-cyclohexyl-5,6-dihydro-2H-pyran-3-yl)trimethylsilane (Table 1, entry 7):
'H NMR (CDCls, 300 MHz) & 7.22 (m, 5H), 4.14 (s, 1H), 3.54 (m, 1H), 2.85 (dd, J = 6.4 & 13.6 Hz,
1H), 2.66 (dd, J=6.0 & 13.6 Hz, 1H), 2.27 (ddd, J= 3.3, 10.0 & 16.7 Hz, 1H), 2.08 (dt, /=2.4 & 16.7
Hz, 1H), 1.74-1.08 (m, 11H), 0.17 (s, 9H). B3C NMR (CDCls, 75 MHz) 5 138.0 (C), 134.1 (C),129.4
(CH), 127.9 (CH), 126.1 (CH), 81.7 (CH), 73.3 (CH), 42.8 (CH), 41.5 (CH,), 41.1 (CH;), 30.4 (CH,),
26.9 (CH,), 26.3 (CH,), 26.2 (CH,), 26.0 (CH,), 24.6 (CH,), -0.2 (3CH;). FTIR (CHCI3): 2931.1,
1603.1, 1119.6, 844.7 cm™". Elemental analysis: C, H; ClOSi. caled.: C 69.48 H 8.61; found: C 69.42 H
8.63.

(Cis-4-chloro-2,6-dicyclohexyl-5,6-dihydro-2H-pyran-3-yl)trimethylsilane (Table 1, entry 8): 'H
NMR (CDCls, 300 MHz) 6 4.05 (s, 1H), 3.08 (t, /= 7.2 Hz, 1H), 2.24 (m, 1H), 2.09 (brd, /= 17.0 Hz,
1H), 1.86-1.43 (m, 11H), 1.32-0.88 (m, 11H) 0.17 (s, 9H). °C NMR (CDCls, 75 MHz) & 138.7 (C),
134.1 (C), 81.7 (CH), 76.8 (CH), 42.8 (CH), 42.2 (CH), 39.1 (CH,), 30.4 (CHy), 29.2 (CH»), 28.6
(CH»), 28.2 (CHy), 26.9 (CH), 26.4 (CH,), 26.2 (CH»), 25.9 (CH,), 24.6 (CH,), -0.2 (3CHs3). FTIR
(CHCI3): 2935.1, 2855.7, 1597.8, 1249.6, 844.7 cm’’. Elemental analysis: CyH;sCIOSi. caled.: C 67.66
H 9.94; found: C 67.66 H 9.48.

((2S,6S)-2-benzyl-4-chloro-6-cyclohexyl-5,6-dihydro-2H-pyran-3-yl)trimethylsilane (Table 1, entry

9 and compound 15): 'H NMR (CDCl;, 300 MHz) & 7.25 (m, 5H), 4.39 (brd, J = 6.9 Hz, 1H), 3.11
(ddd, J =2.7, 6.8 & 12.7 Hz, 1H), 3.02 (dd, J = 1.5 & 9.3 Hz, 1H), 2.60 (dd, J = 3.9 & 6.8 Hz, 1H),
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2.31(ddd,J=3.2,10.2 & 16.7 Hz, 1H), 2.18 (brd, J=17.0 Hz, 1H), 1.74-1.58 (m, 5H), 1.17 (m, 1H),
1.09 (m, 3H), 0.88 (m, 2H), 0.17 (s, 9H). °C NMR (CDCls, 75 MHz) & 140.0 (C), 139.0 (C), 134.8 (C),
129.3 (2CH), 127.6 (2CH,), 125.8 (CH), 79.0 (CH), 77.2 (CH), 42.1 (CH>), 42.0 (CH), 39.2 (CH,),
28.5 (CHy), 28.2 (CH»), 26.4 (CHy), 25.9 (CH»), 25.7 (CH), 0.1 (3CHs). FTIR (CHCIs): 2906.6,
1602.5, 1248.1, 841.4 cm’’. Elemental analysis: C,H;,CIOSi. caled.: C 69.48 H 8.61; found: C 69.49 H
8.76. [a]* b = —24.9 (¢ 1.46, CHCl;)

The enantiomeric excess was determinated by HPLC analysis employing a Daicel Chiracel AD-H
column (Hexane: i-propanol 99:1, 1.0 mL/min, t; = 28.69 min for major enantiomer, t; = 30.08 min for
minor enantiomer).

(4-chloro-2-(4,4-dibromobut-3-enyl)-5,6-dimethyl-5,6-dihydro-2 H-pyran-3-yl)trimethylsilane
(Table 1, entry 10): "H NMR (CDCls, 300 MHz) 6 6.37 (t, J = 7.3 Hz, 1H), 4.19 (m, 1H), 3.16 (m,
1H), 2.17 (m, 3H), 1.78 (m, 1H), 1.49 (qui, J = 7.3 Hz, 1H), 1.20 (d, /= 6.1 Hz, 3H), 1.06 (d, J = 6.1
Hz, 3H), 0.18 (s, 9H). BC NMR (CDCls, 75 MHz) 6 145.30 (C), 138.4 (CH), 135.4 (C), 88.4 (C), 76.7
(CH), 75.2 (CH), 44.1 (CH), 33.4 (CH»), 28.7 (CHy), 19.7 (CH), 15.4 (CH), 0.2 (3CHj3). FTIR (CHCI;):
2973.5,1592.5, 1250.9, 839.5 cm’’. Elemental analysis: C,,H»;Br,CIOSi. caled.: C 39.04 H 5.38; found:
C39.05 H5.22.

(4-chloro-2-cyclohexyl-5,6-dimethyl-5,6-dihydro-2H-pyran-3-yl)trimethylsilane (Table 1, entry
11): '"H NMR (CDCl3, 300 MHz) & 4.13 (s, 1H), 3.63 (m, 1H), 2.07 (m, 1H), 1.79-0.88 (m, 17H), 0.22
(s, 9H). >C NMR (CDCls, 75 MHz) & 144.9 (C), 133.8 (CH), 82.7 (CH), 71.1 (CH), 44.3 (CH), 42.3
(CH), 30.7 (CHy), 27.2 (CH»), 26.6 (CH,), 25.8 (CH»), 25.6 (CH,), 17.9 (CH3), 11.2 (CH3), 15.4 (CH),
0.1 (3CHs3). FTIR (CHCIl3): 2970.5, 1602.5, 1249.3, 841.5 cm”. Elemental analysis: C;sH,CIOSi.
caled.: C 63.86 H9.71; found: C 63.90 H 9.95.

Cis-4-chloro-6-isobutyl-2-methyl-3,6-dihydro-2H-pyran (Table 3, entry 1): '"H NMR (CDCls, 300
MHz) 8 5.74 (s, 1H), 4.11 (m, 1H), 3.71 (m, 1H), 2.19 (m, 2H), 1.78 (m, 1H), 1.81 (qui, J = 6.7 Hz,
1H), 1.50 (m, 1H), 1.24 (m, 3H), 0.91 (m, 6H). °C NMR (CDCls;, 75 MHz) & 129.3 (C), 128.2 (CH),
127.2 (CH), 73.7 (CH), 70.6 (CH), 44.3 (CH,), 40.3 (CH,), 24.3 (CH), 23.0 (CH3), 22.3 (CH3), 21.0
(CH3). FTIR (CHCl3): 2960.1, 1666.3, 1600.7, 1385.9, 1048.4 cm™. Elemental analysis: C,H,,CIO.
caled.: C 63.65 H 9.08; found: C 63.65 H 9.25.

Trans-4-chloro-6-isobutyl-2-methyl-3,6-dihydro-2H-pyran (Table 3, entry 2): "H NMR (CDCls, 300
MHz) 6 5.79 (s, 1H), 4.28 (m, 1H), 3.91 (sxt, J = 6.7 Hz, 1H), 2.19 (brs, 2H), 1.77 (sep, J = 6.7 Hz,
1H), 1.59 (m, 2H), 1.21 (m, 3H), 0.91 (m, 6H). BC NMR (CDCl3, 75 MHz) 6 128.3 (C), 126.6 (CH),
71.5 (CH), 64.4 (CH), 42.4 (CHy), 39.7 (CH,), 24.7 (CH), 23.1 (CH3), 22.1 (CHs), 20.6 (CH3). FTIR
(CHCI3): 2960.1, 1666.3, 1600.7, 1385.9, 1048.4 cm’’. Elemental analysis: C;,H;,ClO. caled.: C 63.65
H 9.08; found: C 63.69 H 9.15.

Cis-4-chloro-6-cyclohexyl-2-methyl-3,6-dihydro-2H-pyran (Table 3, entry 3): "H NMR (CDCls, 300
MHz) 6 5.78 (s, 1H), 4.28 (m, 1H), 3.92 (brs, 1H), 3.68 (m, 1H), 2.16 (m, 2H), 1.67 (m, 5H), 1.42 (m,
1H), 1.05 (m, 5H). BC NMR (CDCls, 75 MHz) 6 129.6 (C), 125.4 (CH), 79.5 (CH), 70.4 (CH), 42.7
(CH), 40.5 (CH,), 28.3 (CH,), 28.1 (CH,), 26.5 (CH>), 26.2 (CH;), 26.1 (CH,), 21.1 (CHj3). FTIR
(CHCI3): 2929.7, 2854.4, 1666.9, 1595.8, 1449.9, 1386.0 cm’'. Elemental analysis: C,H;4CIO. calcd.:
C 67.12 H 8.92; found: C 67.14 H 8.73.
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4-chloro-6-cyclohexyl-2,3-dimethyl-3,6-dihydro-2H-pyran (Table 3, entry 4): '"H NMR (CDCls, 300
MHz) § 5.69 (s, 1H), 4.11 (brs, 1H), 3.76 (m, 1H), 2.03 (m, 1H), 1.75-1.26 (m, 5H), 1.28-1.05 (m,
11H), 0.88 (m, 4H). >C NMR (CDCl;, 75 MHz) & 136.0 (C), 124.6 (CH), 79.9 (CH), 72.5 (CH), 43.4
(CH), 41.7 (CH), 28.3 (CH,), 28.0 (CHa>), 26.5 (CH>), 26.2 (CH»), 26.1 (CH,), 18.0 (CH3), 11.8 (CH3).
FTIR (CHCI3): 2929.9, 2855.2, 1652.3, 1450.7 cm™'. Elemental analysis: C,;H, ClO. caled.: C 68.26 H
9.25; found: C 68.27 H 8.97.

Procedure for synthesis of (R)-1-cyclohexyl-4-(trimethylsilyl)but-3-yn-1-ol

(R-15): /5%
™S

OBz A)  (18,2R)-1-cyclohexyl-2,3-dihydroxypropyl benzoate: A

O/Y\ OH dried necked round-bottomed flask, nitrogen inlet, was charged with 4 A powdered,
OH activated molecular sieves and dry CH,Cl, (350 mL.). The flask was cooled to -20°C,

L-(-)-Diethyl tartrate (0.8 mL, 0.2 equiv), Ti('PrO), (1.15 mL, 0.1 equiv), and cyclohexylprop-2-en-1-
ol® (5.5 g, 0.039 mol) were added sequentially with stirring. The reaction mixture was stirred at -20°C
for 30 min. and then TBHP (11.3 mL, 1.8 equiv) was added dropwise, being careful to maintain the
reaction temperature at -20°C. The mixture was stirred overnight.
Then, benzoic acid (8.6 g, 1.8 equiv) and Ti('PrO), (14 mL, 1.5 equiv) were added at -20°C, and the
reaction mixture was allowed to reach room temperature until TLC shows complete conversion of the
substrate (5 hours approximately). Workup was then performed. A solution of 15% tartaric acid (w/v)
was cooled to 0°C, by means of an ice water bath. The reaction mixture was allowed to warm to ca. 0°C
and then is slowly poured into a beaker containing the precooled solution of tartaric acid. The two
phase mixture is stirred for 5-10 min., and then transferred to a separatory funnel. The phases were
separated and the aqueous phase extracted with ether. The combined organic layers were treated with a
precooled solution of 30% NaOH (w/v). The two phase mixtures were stirred vigorously for 30 min., at
0°C. Following transfer to a separatory funnel and diluted with water, the phases were separated and
the aqueous layer extracted with ether. The combined organic layers were dried over magnesium
sulphate, filtered, concentrated and chromatographied, obtaining compound 6 (80%). Colourless oil.
'H NMR (CDCls, 300 MHz) & 7.96 (d, J = 7.5 Hz, 2H), 7.49 (d, J = 7.3 Hz, 1H), 7.37 (d, J= 7.7 Hz,
2H), 4.96 (brdd, J=7.3 & 7.6 Hz, 1H), 3.84 (m, 2H), 3.65 (brdd, J=2.4 & 11.8 Hz, 1H), 3.52 (dd, J =
5.4 & 12.0 Hz, 1H), 1.84 (m, 2H), 1.63 (m, 4H), 1.14 (m, 6H). °C NMR (CDCl;, 75 MHz) & 166.9
(C), 133.0 (CH), 129.6 (CH), 128.1 (CH), 77.6 (CH), 70.1 (CH), 62.7 (CH,), 37.9 (CH), 29.9 (CH,),
26.5 (CH,), 26.1 (CH,), 26.0 (CH,), 25.8 (CH,). FTIR (CHCl;): 3416.8, 2928.8, 1715.5, 1277.1 cm’.
Elemental analysis: C,sH,,04. caled.: C 69.04 H 7.97; found: C 69.03 H 8.14. [a]” p = —14.4 (¢ 1.10,
CHCl)

OH  B) (S)-1-cyclohexylethane-1,2-diol: To a solution of lead tetraacetate (23 g, 1.1 equiv) in
CHCl, (5 mL./mmol diol) was added NaHCO; (8.7 g, 2.2 eq). After the mixture was
stirred for 5 min. at 0°C, a solution of the corresponding diol in CH,Cl, (2 mL/mmol diol)
was added dropwise. The reaction was stirred at 0°C until TLC showed complete conversion of the
substrate, and quenched by adding saturated NaHCO; solution. The phases were separated and the
aqueous layer was extracted with ether. The combined organic phase was dried over MgSO, and
concentrated to give crude aldehyde as an oil (100% yield) which without any further purification was

OH

6 Charette, A. B.; Molinaro, C.; Brochu, C. J. Am. Chem. Soc. 2001, 123, 12168-12175.
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added over a suspension of LiAlHy (2.7 g, 1.5 equiv) in ether (400 mL). After the addition was
completed the reaction was carefully quenched by addition of water and the mixture filtered. The
alumina cake was washed at least five times with ether. The filtrates were combined and reduced to
dryness to yield a yellowish oil in quantitative yield.

'H NMR (CDCls, 300 MHz) & 3.60 (brd, J = 10.9 Hz, 1H), 3.39 (m, 2H), 1.80-1.55 (m, 5H), 1.31 (m,
1H), 1.21-0.93 (m, 5H). °C NMR (CDCls, 75 MHz) & 76.2 (CH), 64.5 (CH), 40.4 (CH), 28.7 (CH,),
28.4 (CH,), 26.1 (CH,), 25.8 (CH,), 25.7 (CH,). FTIR (CHCL): 3372.1, 2930.0, 1449.4, 1068.4 cm.
Elemental analysis: CsH,O,. caled.: C 66.63 H 11.18; found: C 66.60 H 11.15. [oc]25 p=+3.6 (c 1.15,
CHCls).

L C) (5)-2-cyclohexyloxirane: To a solution of (S)-1-cyclohexylethane-1,2-diol in dry
@ pyridine (50 mL), p-toluene-sulfonyl-chloride (9.0 g, 1.0 equiv) was added. This solution
was stirred at 0°C overnight, by which time white needles of pyridine hydrochloride had
formed. To the reaction was then added small portions of ice with vigorous shaking to destroy excess
of TsCl. The product was then dissolved in CH,Cl, and washed with a saturated aqueous solution of
CuSOy4 until no change of colour was observed in the aqueous phase. The combined organic layers
were combined, dried and concentrated to give the corresponding monotosylated alcohol as a yellow
oil in 80 % yield. This alcohol, without any further purification, was added dropwise over a stirred
suspension of NaH (1.9 g, 1 equiv) in CH,ClI, at 0°C, and the reaction was allowed to reach room
temperature until TLC showed complete conversion of the substrate (usually 12 hrs.). Then, the
reaction was carefully quenched by adding a saturated aqueous solution of NH4CI and then washed
with great amounts of water. The combined organic layers were dried and reduced to dryness to give a
yellow oil which was chromatographied to give the desired epoxide in 75%.
'H NMR (CDCls, 300 MHz) & 2.65 (brs, 2H), 2.46 (m, 1H), 1.81 (m, 1H), 1.65 (m, 2H), 1.10 (m, 6H),
0.80 (m, 2H). >C NMR (CDCl;, 75 MHz) & 56.4 (CH), 45.7 (CH,), 40.1 (CH), 29.4 (CH,), 28.6 (CH,),
26.1 (CH,), 25.4 (CH,), 25.3 (CH,). FTIR (CHCls): 2921.5, 1703.6, 837.1 cm™. Elemental analysis:
CsH,,0. caled.: C 76.14 H 11.18; found: C 76.15 H 11.16. [a.]” p = —0.5 (¢ 1.01, CHCL).

trimethylsilylacetylene (2.3 mL, 1.2 equiv) in Et,0O (70 mL) at —78 °C was added n-
BuLi (2.5 M in hexane, 6.5 mL, 1.2 equiv) over 20 min. After stirring at —78 °C for
additional 20 min, trimethylalumina (2.0 M in toluene, 8.1 mL, 1.2 equiv) was
added via syringe pump over 40 min. The reaction was stirred at —78 °C for 30 min, —45 °C for 30 min,
and then cooled to —78 °C, whereupon (S)-2-cyclohexyloxirane (1.7 g, 1 equiv) in Et;,0O (6 mL) was
added over 15 min. After stirring for 15 min at the same temperature, boron trifluoride diethylether (1.8
mL, 1.2equiv) in Et,O (6 mL) was added slowly along the walls of the flask over 15 min. The content
was stirred at —78 °C for 1 h, whereupon methanol (20 mL) was added along the walls of the flask. The
reaction was allowed to warm to 0 °C over 25 min before saturated aqueous NH4Cl (20 mL) was
added. After stirring at room temperature for additional 30 min, the content was diluted with water,
extracted with diethyl ether, dried over Na,SOy, filtered, and concentrated. The residue was purified by
column chromatography on silica gel to give 2.2 g product as clear volatile oil (73 % yield) after
removing solvent by distillation.

'H NMR (CDCls, 300 MHz) & 3.38 (m, 1H), 2.38 (dd, J = 4.2 & 16.8 Hz, 1H), 2.27 (dd, J=7.6 &
16.8 Hz, 1H), 1.68 (m, 5H), 1.12 (m, 6H), 0.07 (s, 9H). *C NMR (CDClL, 75 MHz)
6 103.6 (C), 87.1 (C), 73.6 (CH), 42.4 (CH), 28.7 (CH), 27.9 (CHy), 26.1 (CHy), 25.9 (CHy), 25.7

/50H D) (R)-1-cyclohexyl-4-(trimethylsilyl)but-3-yn-1-0l (R-15): To a solution of
Z
™S
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(CH,), -0.2 (3CH3). FTIR (CHCls): 2921.5, 1703.6, 837.1 cm™. Elemental analysis: C,;H,,0Si. calcd.:
C 69.58 H 10.78; found: C 69.58 H 10.97. [a]*’ b =+9.0 (¢ 1.17, CHCL).

The enantiomeric excess was determinated in the benzoate derivatives by HPLC analysis employing a
Daicel Chiracel AD-H column (Hexane: i-propanol 99:1, 0.8 mL/min, t; = 8.71 min for major
enantiomer, t; = 9.54 min for minor enantiomer).

Procedure for synthesis of 11-(4-chloro-5.6-dihyvdro-2H-pvran-2-yl)undecanal

O CHO
. 9
(7): @

Cl

o BrA) 2-(10-bromodecyl)-4-chloro-5,6-dihydro-2H-pyran. To a stirred solution of 0.1 ml
Q/\M (1.32 mmol) of homopropargylic alcohol and 11-bromoundecanal (330 mg, 1 equiv) in
¢l dry CH,Cl, (15 ml) was added anhydrous FeCl; (214 mg, 1 equiv) in one portion at room
temperature. The reaction was completed in approximately 1 min, quenched by addition
of water with stirring for 5 min, and extracted with CH,Cl,. The combined organic layers were dried
over magnesium sulphate, and the solvent was removed under reduced pressure. This crude reaction
mixture was purified by flash silica gel column chromatography (n-hexane/EtOAc solvent systems)
affording the corresponding pyran as a pale yellow oil (415 mg, 98%).
'H NMR (CDCls, 300 MHz) 8 5.74 (s, 1H), 3.95 (m, 2H), 3.59 (ddd, J = 6.3, 7.4 & 7.4 Hz, 1H), 3.32
(t, J= 6.8 Hz, 1H), 2.48 (m, 1H), 2.08 (brd, 1H), 1.76 (m, 2H), 0.80-1.44 (m, 16H). >C NMR (CDCl,,
75 MHz) 8 129.4 (C), 127.1 (CH), 74.8 (CH), 63.8 (CH2), 35.1 (CH»), 34.0 (CH»), 33.0 (CH»), 32.8
(CH»), 29.6 (CH»), 29.5 (CH»), 29.4 (CH>), 29.3 (CH,), 28.7 (CH,), 28.2 (CH,), 25.1 (CHy). FTIR
(CHCl3): 2928.7, 2854.4, 1666.9, 1605.8 cm™'. Elemental analysis: C,sH,BrCIO. caled.: C 53.35 H
7.76; found: C 53.37 H 8.01.

° N B) 11-(4-chloro-5,6-dihydro-2H-pyran-2-yl)undecanenitrile. To a stirring solution of
Q/\M the pyran described above (640 mg, 2.0 mmol) in dry DMSO (20 ml), was added NaCN
cl (392 mg, 4 equiv) and the reaction mixture was stirred at 80°C for 3 h. Then it was
allowed to cool, and water was added to quench the reaction. The mixture was diluted
with ether, the combined organic layers were dried over magnesium sulphate, and the solvent was
removed under reduced pressure. This crude reaction mixture was purified by flash silica gel column
chromatography (n-hexane/EtOAc solvent systems) affording the corresponding nitrile as a pale yellow
oil (409 mg, 72%)."H NMR (CDCls, 300 MHz) & 5.75 (s, 1H), 4.01 (m, 2H), 3.67 (m, 1H), 3.32 (t, J =
6.8 Hz, 1H), 2.55 (m, 1H), 2.32 (t, J = 6.9 Hz, 1H), 2.15 (m, 1H), 1.62 (m, 2H), 1.39 (m, 16H). °C
NMR (CDCls, 75 MHz) 6 129.2 (C), 126.9 (CH), 119.6 (C), 74.6 (CH), 63.6 (CH,), 34.8 (CH,), 32.7
(CH), 29.3 (CHy), 29.2 (CHy), 29.1 (CH>), 29.0 (CH>), 28.3 (CH,), 28.4 (CH,), 25.1 (CH,), 24.2
(CH,). FTIR (CHCl3): 2929.0, 2855.4, 1670.0, 1602.0 cm™. Elemental analysis: C,sH,CINO. caled.: C
67.70 H 9.23; found: C 67.71 H 9.28.

corresponding nitrile (385 mg, 1.36 mmol) in dry THF (20 ml) was cooled to 0°C, and

cl DIBAL-H (4.10 ml, 3 equiv, 1M in ciclohexene) was added. The reaction mixture was
stirred until TLC showed complete conversion of the substrate, quenched by the addition of 1 N HCI
solution, and filtered through a Celite pad. The precipitate was thoroughly washed with EtOAc. The
organic layer was washed with NaHCOj3 saturated solution and dried over MgSO, and the solvent was
removed under reduced pressure. This crude reaction mixture was purified by flash silica gel column

WCHO C) 11-(4-chloro-5,6-dihydro-2H-pyran-2-yl)undecanal. A solution of the
=

Pedro O. Miranda, Miguel A. Ramirez, Victor S. Martin and Juan 1. Padron



The Silyl Alkyne-Prins Cyclization: Stereoselective Synthesis of Tetra- and Pentasubstituted Halo-Dihydropyrans S9

chromatography (n-hexane/EtOAc solvent systems) affording the aldehyde as a pale yellow oil (285
mg, 73%).

'H NMR (CDCl3, 300 MHz) 8 9.70 (s, 1H), 5.70 (s, 1H), 3.97 (m, 2H), 3.61 (m, 1H), 2.51 (m, 1H),
2.35 (t,J = 7.3 Hz, 2H), 2.13 (m, 1H), 1.40 (m, 17H). °C NMR (CDCl;, 75 MHz) & 202.6 (CH), 129.2
(C), 126.9 (CH), 74.6 (CH), 63.6 (CH>), 43.6 (CH»), 34.8 (CH,), 32.7 (CH,), 29.3 (CH,), 29.2 (CH,),
29.1 (CHy), 28.9 (CH,), 24.8 (CH,), 21.8 (CH,). FTIR (CHCls): 29269.0, 2854.2, 1726.5, 1343 cm’.
Elemental analysis: C;sH,,ClO,. caled.: C 67.00 H 9.49; found: C 67.01 H 9.80.
6-benzyl-4-chloro-2-(3-(4-chloro-5,6-dihydro-2H-pyran-2-yl)propyl)-5,6-dihydro-2H-pyran-3-
yDtrimethylsilane (18): 'H NMR (CDCl;, 300 MHz) & 7.19 (m, 5H), 5.73 (brs, 1H), 4.22 (brs, 1H),
4.00 (m, 2H), 3.63 (ddd, /=3.7, 10.15 & 20.9 Hz, 2H), 2.88 (dd, /= 6.7 & 13.7 Hz, 1H), 2.64 (dd, J =
6.0 & 13.6 Hz, 1H), 2.54 (m, 1H), 2.34 (ddd, J = 3.0, 10.0 & 16.6 Hz, 1H), 2.16 (brd, J = 15.4 Hz,
2H), 2.03 (m, 1H), 1.65 (m, 1H), 1.49-1.23 (m, 19H), 0.17 (s, 9H). °C NMR (CDCls;, 75 MHz)
6 138.0 (C), 137.9 (C), 135.3 (C), 129.2 (CH), 128.0 (CH), 126.9 (CH), 126.0 (CH), 78.2 (CH), 74.6
(CH), 73.9 (CH), 63.6 (CHy), 41.5 (CHy), 41.2 (CH,), 35.8 (CH»), 34.9 (CHy), 32.8 (CHy), 29.5
(5CH,), 24.9 (CH,), -0.1 (3CH3). FTIR (CHCly): 2927.1, 2855.0, 1666.3, 1600.9, 1404.2 cm™.
Elemental analysis: C,H,,Cl,0,Si. caled.: C 66.52 H 8.47; found: C 66.51 H 8.61.
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“Ab initio” computational data

Optimized Structures using B3LYP/6-31G(d) with the Gaussian 98W program.
Energies (in hartrees), negative frequencies for the transition states (in cm™) and cartesian coordinates
(atomic number, and coordinates x, y, and z in A).

Table 2

Entry 1 (cis)
Energy: -1335.3861836 a.u.

-0.852746 0.166169 -0.362168
-1.428237 1.467627 -0.244296
-0.605623 2.544541 -0.671062
-1.455839 3.806067 -0.631576
0.618419 2.607141 0.246801
1.248064 1.242549 0.305713
0.650887 0.097998 -0.055817
1.551512 -1.578642 -0.290054
-1.007260 -0.190454 -1.394401
-0.261637 2.361291 -1.703445
-2.316719 3.704833 -1.299649
-1.828252 3.981932 0.383447
-0.870792 4.677511 -0.945460
0.320142 2.943893 1.249413
1.348831 3.332322 -0.131958
2.936380 1.297094 0.880692
-1.662579 -0.709015 0.614353
-3.190079 -0.693520 0.396902
-1.304650 -1.743892 0.561313
-3.517845 0.350719 0.463873
1.792963 -2.438478 1.378808
2.302948 -3.400965 1.246373
2.403942 -1.825309 2.050283
0.837770 -2.633003 1.879481
3.216389 -1.373328 -1.170362
3.994416 -0.957340 -0.526449
3.554784 -2.357109 -1.520332
3.128021 -0.724648 -2.049740
0.519690 -2.680052 -1.444629
-0.466292 -2.950942 -1.055313
0.373509 -2.207933 -2.423925
1.068615 -3.614447 -1.618177
-1.440112 -0.349358 1.627261
-3.881992 -1.485855 1.516377
-4.972681 -1.448733 1.410032
-3.583460 -2.542656 1.497047
-3.627997 -1.086707 2.505679
-3.599544 -1.232152 -0.981875
-3.259607 -2.267227 -1.122617
-4.690620 -1.226804 -1.091114
-3.186847 -0.628001 -1.797049

>—‘»—‘>—‘>—‘>—‘>—‘»—‘EO\O‘\O‘\O‘\O‘\OOO‘\

[a—
J

—_ = = O\ = = = N = e = e QN = = = QN = = = QN == N O
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The Silyl Alkyne-Prins Cyclization:

Entry 1 (trans)

Energy: -1335.3852755 a.u.

0.792100
1.434271
1.266105
2.127685
-0.218996
-1.072624
-0.681678
-1.845700
0.824046
1.614281
3.181494
1.826476
2.023610
-0.522061
-0.391743
-2.754454
1.588681
2.880019
1.819736
2.609734
-3.284943
-3.886721
-3.943468
-2.916172
-2.467388
-3.044160
-3.112817
-1.634095
-0.899173
-0.500648
-0.068582
-1.593953
0.932905
3.419011
4.316102
3.692246
2.675890
3.971545
4.276485
4.862222
3.628482

— AN AN 0N
N

R

[a—

bt et QN bt et ek QN b e ek e QN b e e O e = = O\ = = N O\

Entry 2 (cis)

-0.031683
1.200087
2.248297
3.415182
2.613845
1.376863
0.142505
-1.374416
-0.599710
1.912604
3.122328
3.735111
4.264931
3.241333
3.207779
1.738734
-0.827392
-1.508679
-0.164407
-2.114863
-1.021120
-1.929461
-0.228200
-0.724621
-1.869698
-1.065612
-2.754527
-2.117004
-2.839338
-2.607033
-3.194287
-3.680032
-1.603391
-2.465387
-2.988194
-1.917129
-3.222886
-0.516327
0.113049
-1.052591
0.147055

Energy: -1335.3843254 a.u.

-0.398278
-0.774686
0.286806
-0.341062
1.218132

AN N0 N

0.415002
1.787297
2.729320
4.115520
2.495375

Stereoselective Synthesis of Tetra- and Pentasubstituted Halo-Dihydropyrans S32

-0.526232
-0.869308
0.081086
-0.380297
0.192725
0.211034
-0.129361
-0.243574
-1.464215
1.070211
-0.414493
-1.383681
0.303580
-0.657948
1.098418
0.694799
0.538226
0.037783
1.383103
-0.841482
-1.421582
-1.553677
-1.058223
-2.410788
1.473867
1.941467
1.407444
2.142249
-0.995333
-1.990246
-0.376237
-1.117553
0.950950
1.113270
0.761373
2.024501
1.390861
-0.391579
0.455594
-0.741322
-1.188604

-0.829570
-0.712997
-0.777164
-0.791218
0.415730
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6 1.602740
6 0.947158
14 1.616067
1 -0.328421
1 0.862240
1 -0.996990
1 -0.939924
1 0.432239
1 0.717714
1 2.120584
17 3.084796
6 -1.584741
6 -1.853444
6 -2.861809
1 -1.317414
6 -3.034431
1 -2.070852
1 -0.953231
6 -4.043783
1 -3.115292
1 -2.667812
6 -4.303481
1 -3.222615
1 -2.770918
1 -4.944262
1 -3.829379
1 -5.120231
1 -4.635590
6 1.270591
1 1.650737
1 1.762924
1 0.198537
6 3.468094
1 4.096825
1 3.727632
1 3.728340
6 0.774907
1 -0.310949
1 0.985019
1 1.187707

Entry 2 (trans)

1.041807
0.056560
-1.723522
0.168352
2.573863
4.226497
4.271286
4.890235
2.790337
3.111969
0.747830
-0.390346
-0.058604
-0.191452
-1.454436
-0.869529
1.013071
-0.246494
-0.999793
0.875984
-0.478874
-0.674016
-0.585767
-1.938312
-0.806593
-2.074677
-1.295429
0.371172
-2.781132
-3.800594
-2.360198
-2.851837
-1.743457
-1.577687
-2.722272
-0.982935
-2.483128
-2.588542
-1.896639
-3.486416

Energy: -1335.3803156 a.u

SO oo OO

—_—_—_ NN DN
(=)

-0.445612
-0.544703
-0.426092
-0.585115
0.920120
1.430049
0.905008

Pedro O. Miranda, Miguel A. Ramirez, Victor S. Martin and Juan 1. Padron

0.448738
-0.180890
-0.428159
-1.904149
-1.705870
-1.660201

0.112713
-0.836110

1.348587

0.326020

1.397538
-0.236861

1.243195

-1.077955

-0.296276
1.799861
1.328514
1.841165

-0.520608

-1.089049

-2.120841

0.957494
2.843374
1.812531
-1.117887
-0.620892
1.346930
1.043590
1.103140
0.961504
1.986874
1.319265
-0.827386
0.050431
-1.251212
-1.572685
-1.953368

-1.869589

-2.856266

-2.119235

0.367951 0.788225
1.742100 1.188794
2.679325 0.123071
4.065694 0.733247
2.516325 -0.609437
1.102031 -0.573414
0.075614 0.109609
4 0 1.867255 -1.541011
-0.489917 -0.175187

0  -1.238855 2.519839 -0.600599

0.485502
1.738607

S33
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-1.564539
0.187356
-0.496332
1.686133
0.829228

-1.716207
-2.991609
-1.655406
-2.958247
-1.726432
-0.811755
-4.241795
-3.020619
-2.987990
-4.255906
-2.956050
-2.907262
-5.145479
-4.267534
-5.125304
-4.363858
3.536307
4.038465
4.207502
3.396243
2.122397
2.661446
2.710905
1.172472
0.944166
0.759679
-0.012970
1.574098

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Entry 3 (cis)

4.162451
4.236347
4.838986
3.149036
2.868765

2.968799 0.956351
-1.688589 -0.047044

-1.532105
0.313563
0.528424

-1.866621

-2.155748

-1.794139

-0.023253

-0.247644
1.373263

-1.495681

-2.933494

-1.316173
0.214012
0.616924

-1.699363

-2.134250

-1.109838

-2.031571

-0.579431

-0.485137

-2.611976

-2.069129

-3.501263

-2.958290

-2.552842

-1.973761

-2.955406

-3.405531

Energy: -1412.8090460 a.u.

N &~

6
8
6
6
6
6
6
1
1
6
6
6
6
6
6

1.211984
1.490932
-0.038182
-0.138058
-1.644499
-1.473373
-0.054579
-0.459853
0.688483
-0.991631
-1.303350
0.445000
-1.019957
-0.138316
1.635515
0.961597
-0.572075
-1.560937
-2.254452
0.437697
-1.032970
-1.210246
0.317358
1.273565
1.594765
0.593736
2.163884
-1.054734
-1.837368
-0.795530
-1.477430
1.799359
2.712166
1.456255
2.083513

-0.991479 -0.269178 -0.281716

-1.959443 0.779334
-1.556481 2.026745
-2.772570  2.941465
-0.380035 2.560779
0.669730 1.488211
0.464126 0.183406
1.860721 -1.114911
2276329 2.143156
-1.447775 -1.293654
-2.867499 -1.833263
2.493618 -1.691748
3.294754 -0.446538
1.194506 -2.600123
-3.047781 -2.567831

Pedro O. Miranda, Miguel A. Ramirez, Victor S. Martin and Juan 1. Padron

-0.228505
-0.775782
-0.755769
0.046351
0.139147
-0.090186
-0.301155
0.557619
0.793905
0.511973
1.387051
-1.344232
-1.281602
-0.821227

S34



The Silyl Alkyne-Prins Cyclization: Stereoselective Synthesis of Tetra- and Pentasubstituted Halo-Dihydropyrans

6 -1.376292
1 -1.058835
1 -1.219010
1 -3.582165
1 -3.134268
1 -2.523307
1 -0.724070
1 0.047149
1 -0.754671
1 -3.577033
1 -3.126606
1 2.889835
1 3.301849
1 1.704186
1 3.930684
1 2.933153
1 3.919156
1 0.404363
1 2.023529
1 0.810420
1 -4.052459
1 -2.327651
1 -2.926616
1 -0.368634
1 -2.061568
1 -1.660503

Entry 3 (trans)

-0.703467 2.210326
-0.749792 -1.271795
1.881946 -1.816491
2.509742 -1.352378
3.071233  0.270041
3.926135 -1.166198
2.860058 1.046212
3.452956 -0.427128
-2.142918 0.741047
-0.999750 0.569341
-2.518292  1.330859
-0.850514 1.966273
-2.423405 1.263139
-2.165859 1.981381
0.255432 -0.800295
0.060604 -2.246440
-1.289050 -1.668709
-3.161302 -0.773803
-3.296074 -1.462678
-2.296054 -2.262986
-3.000801 -0.889006
-3.388524 -0.932433
-1.897453 -1.679116
-0.352787 2.454967
0.144177 2.308745
-1.458098 2.952719

Energy: -1412.8030121 a.u.

6 0.867487

8 1.606858

6 1.463595

6 2.354658

6 -0.006229

6 -0.902087

6 -0.574983

1 -1.802925
1 -2.535480
6 1.661654

6 3.006746
6

6

6

6

6

1

1

1

1

1

1

1

= B

-3.465677
-2.067829
-1.098910
3.789403
1.837810
0.811253
1.806297
3.397959
2.049898
2.288968
-0.300203
-0.146354

-0.093643 -0.647054
1.088837 -0.962311
2.200201 -0.079310
3.307733 -0.625249
2.619546 0.016767
1.417846 0.130742
0.158799 -0.188613
-1.315116 -0.239228
1.863575 0.698018
-1.055798 0.292076
-1.428178 -0.364807
-0.846366 -1.017408
-2.005124 1.503914
-2.669605 -1.371309
-2.526568 0.363548
-0.558783 1.737022
-0.608452 -1.615248
1.927471  0.926962
2.978186 -0.654344
3.572422 -1.643568
4.202117 0.004459
3.193856 -0.873972
3.282785 0.878379
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1.060131 -1.974041
3.620463 -0.522799
2.812796 -1.755901
-4.117869 -0.298085
-3.985353 -1.764469
-3.331850 -0.231478
-2.478572 -1.238872
-1.133774 -2.369165
-2.774907 -2.843881
-0.949510 -2.298940
-1.829730 -3.486208
-0.153920 -3.105636
4.694382 -2.792571
3.189307 -3.439114
4.103822 -2.213367
0.908970 -0.138408
2.134563 -1.382554
2.618674 0.206880

Figure 2

Silyl cation 10

Energy: -638.9633954 au

6
8
6
6
6
6
6
6
1
1
1
1
1
1
1
1
1
1
1
1
1
1

-0.556072
-1.546233
-1.944534
-3.416335
-1.011430
0.392568
1.545399
-0.041789
3.334028
-0.152613
-1.736509
-4.016484
-3.609410
-3.733849
-1.278762
-1.214966
1.046447
-0.197859
-0.522224
3.392607
4.046071
3.864182

Silyl cation 11

1.417912
0.815972
-0.530989
-0.707127
-1.537153
-1.177271
-0.796986
2.645803
-0.343759
1.053423
-0.507363
0.051169
-0.655426
-1.690219
-1.597481
-2.523024
2.556029
3.481554
2.856672
1.141588
-0.880181
-0.887029

Energy: -638.9511083 au

NN D

0
0
0
0
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0.342481
-0.447566
-1.395930
-0.333805
-1.320808
-1.914849

2.170791

1.947153

1.482595
-2.393009
-1.430809
-1.032854
-0.194619

0.473732

1.365128

2.136207

2.394821

1.808125

0.349044
-0.159703
0.367169
0.068373
-0.342225
-0.186292
-0.060092
-0.270786
0.081281
1.295317
1.441281
0.578101
-1.007029
0.430429
-1.404720
0.096131
-0.390253
0.428703
-1.227199
0.095141
-1.097742
1.350388

0.123803 0.991577 0.364680
-1.165594 0.910593 -0.096419
-1.942645 -0.158475 0.373289
-3.382383 0.018407 -0.067502
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— o e e e e e e e e e e e = N N O O

SO OO

SO DD DD DODDODODODODOO O

-1.342007
0.036421

0.184755
-1.841548
-3.801113
-3.443369
-3.980614
-1.695429
-1.702951

1.859480

0.292867

0.852171

3.366358

3.268949

3.302572

-1.572939 -0.247020
-1.286028 -0.150329

0.998142 -0.492460 0.007881

0.838575 2.148679 -0.291391
0 2.905942 -0.550164 0.034413
0.975885 1.458719
-0.259098 1.460527
0.905096 0.418177
0.149608 -1.151418
-0.848973  0.225083
-1.715418 -1.272563
-2.370364  0.409604
2.250598 0.084175
3.065457 -0.040602
2.040412 -1.378705
0.192623 -1.155933
-1.979202 0.002821
0.118361 1.292035

Transition state (TS) from 11 to 12

Energy: -638.9490764 au
Negative vibrational frequency: -196.701 cm™

6

8
6
6
6
6
6
6
14
1
1
1
1
1
1
1
1
1
1
1
1
1

0.212053
-1.145149
-1.920423
-3.318497
-1.227908
0.008017
0.893573
0.877387
2.794258
0.216436
-1.792040
-3.834513
-3.323369
-3.865327
-1.630041
-1.633458
1.904112
0.330530
0.890087
3.294902
3.023774
3.315269

1.030419
0.967433
-0.002289
0.013001
-1.814761
-1.279305
-0.364640
2.206303
-0.614168
1.142692
-0.228179
0.875139
0.134000
-0.889036
-1.982057
-2.455618
2.325180
3.123666
2.069297
0.144984
-2.066321
-0.067224

a-silane allenyl cation 12

Energy: -638.9543818 au

6
8
6

-0.068411
0.005783
1.128514

0.010317
0.030528
-0.038733
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0.381483
-0.077445
0.399525
-0.140597
-0.225290
-0.092215
0.066691
-0.309159
0.005221
1.472815
1.461461
0.303540
-1.226416
0.142301
-1.225110
0.558177
0.048841
-0.073717
-1.393627
-1.159923
-0.122217
1.277707

0.004648
1.509691
2.087239
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Ptk e ek ek ek ek ek e e e e N QN O\ O\ O

1.194243
1.738714
1.075528
0.400852
-1.502217
0.077489
0.627010
2.034544
0.226201
1.964406
1.525527
1.231661
2.825483
-1.765850
-1.609565
-2.195522
0.864302
0.525830
-1.374753

-0.126796
-2.916895
-2.145381
-1.363977
0.372683
-1.931391
0.790036
0.093546
-0.377900
-0.845171
0.853818
-3.670535
-2.884844
1.341451
0.451493
-0.390105
-3.164022
-0.834879
-2.165113

Alkynil carbocation 13

Energy: -348.2489838 au

— e b e e e ek e e = = N N ON N O\ O\ OO O\

-1.296171
-0.185534
0.920623
2.041563
1.586458
0.346260
-0.886050
-2.557775
-1.346953
0.999121
2.238652
1.831250
2.951835
1.981605
2.247978
-1.704783
-2.777285
-2.472427
-3.394169

-0.121502
-0.974694
-1.034477
-1.783469
2.085623
1.720172
1.327274
-0.531112
-0.378970
-0.588832
-2.657451
-2.107633
-1.172144
2.192122
2.356735
2.045229
-1.590251
-0.329140
0.052839
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3.554621
1.167586
0.335317
-0.465640
-0.330406
-2.265816
-0.327727
1.490984
3.991187
3.855722
3.933938
1.767991
1.229318
0.102330
-1.416617
0.033665
-2.468472
-3.159321
-2.440396

0.380069
-0.176547
0.426606
-0.156626
-0.227362
-0.015437
0.172106
-0.351295
1.444641
1.422094
0.484743
-1.176897
-0.115486
-1.236542
0.594149
0.197105
-0.193396
-1.422383
0.045977

S38



The Silyl Alkyne-Prins Cyclization: Stereoselective Synthesis of Tetra- and Pentasubstituted Halo-Dihydropyrans S39

Transition State (TS) from 13 to 14
Energy: -348.238428996 au

Negative vibrational frequency: -262.711 cm’™

-1.154956 -0.440133 0.388213
0.011397 -0.859418 -0.123868
1.188597 -0.231428 0.360196
2.406422 -1.001437 -0.109496
1.205106 1.287775 -0.215967

-0.158142  1.679765 -0.097398

-1.363758 1.419556 0.058653

-2.347035 -1.075431 -0.267029

-1.171618 -0.353099 1.478526
1.139128 -0.149318 1.452034
2412331 -1.995290 0.347233
2401339 -1.112072 -1.197510
3.319234 -0.479933 0.192371
1.556370 1.293205 -1.252516
1.889957 1.858104 0.420191

-2.383979 1.756925 0.107871

-2.313075 -2.149404 -0.040946

-2.317551 -0.951669 -1.352326

-3.280712 -0.674107 0.132985

bt b b bt e b et b bk e = N N N N ON ON OO O

Allenyl Carbocation 14
Energy: -348.2541434 au

6 -1.282138 -0.218769 0.384102
8 -0.113787 -0.984837 -0.181022
6 0.996166 -0.965803 0.417806
6 2.166995 -1.627063 -0.173422
6 1.427265 2.198173 -0.222071
6 0.218280 1.741098 -0.007599
6 -0.980908 1.257355 0.182317
6 -2.512978 -0.716745 -0.344852
1 -1.309526 -0.484605 1.447476
1 1.045529 -0.520564 1.415344
1 2430617 -2.487305 0.462604
1 1.977110 -1.960762 -1.194625
1 3.029817 -0.950412 -0.132342
1 1.809440 2.338603 -1.232095
1 2.070244 2.513274 0.598466
1 -1.850296 1.912767 0.214066
1 -2.653078 -1.789977 -0.191758
1 -2.447048 -0.503667 -1.415159
1 -3.388599 -0.198135 0.058519
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