Supporting Information

The Journal of Organic Chemistry

Selectivity Guidelines and a Reductive Elimination-Based Model for Predicting the Stereochemical Course of Conjugate Addition Reactions of Organocuprates to \(\gamma\)-Alkoxy-\(\alpha,\beta\)-Enoates

Artem S. Kireev, Madhuri Manpadi and Alexander Kornienko*

Contribution from the Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801

akornien@nmt.edu

Table of contents

1. General Methods S2
2. Characterization data for cuprate addition product mixtures 14a, 14d, 14f, 15a, 15d, 15f, 16a, 16d, 16f, 17a, 17d, 17f, 18a, 18d, 18f. S2 – S7
3. References S7
4. Copies of \(^1\)H and \(^13\)C-NMR spectra for compounds 1, 2, 3, 5, 9, 12a, 12b, 12c, 12d, 12e, 12f, 13a, 13d, 13f, 29, 30. S8 – S39
5. Copies of \(^1\)H NMR showing the epimeric ratios of cuprate addition product mixtures 14a, 14d, 14f, 15a, 15d, 15f, 16a, 16d, 16f, 17a, 17d, 17f, 18a, 18d, 18f. S40 – S54
1. General Methods.

Unless otherwise noted all commercially obtained reagents were used without purification. THF was distilled from sodium-benzophenone ketyl prior to use. Dichloromethane and methanol were distilled from calcium hydride. Reactions were carried out under a nitrogen atmosphere in oven-dried glassware using standard syringe, cannula and septa techniques. Reactions were monitored by TLC (Silica Gel 60 F$_{254}$, 250 µm) and visualized with UV light and ceric ammonium molybdate solution. Flash chromatography was performed on silica gel (32-63 µm, 60 Å pore size).

Aryl bromides d1 and f2,3 were prepared as previously described.

2. Characterization data for cuprate addition product mixtures

Epimeric mixture 14a: 94%; R_f 0.45 (30% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the anti-isomer δ 7.55 – 7.15 (m, 15H), 4.80 (d, J = 11.6 Hz, 1H), 4.55 (d, J = 11.6 Hz, 1H), 4.44 (s, 2H), 3.81 – 3.73 (m, 1H), 3.58 – 3.47 (m, 1H), 3.50 (s, 3H), 3.36 (dd, J = 10.5, 5.2 Hz, 1H), 3.04 (dd, J = 16.0, 5.8 Hz, 1H), 2.64 (dd, J=16.0, 9.1 Hz, 1H); HRMS m/z (ESI) calcd for C$_{26}$H$_{28}$O$_4$Na (M+Na)$^+$ 427.1879, found 427.1891.

Epimeric mixture 14d: 76%; R_f 0.55 (30% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the anti-isomer δ 7.63 – 7.15 (m, 10H), 6.68 – 5.59 (m, 3H), 5.92 (s, 2H), 4.75 (d, J = 11.6 Hz, 1H), 4.50 (d, J = 11.6 Hz, 1H), 4.42 (s, 2H), 3.78 – 3.30 (m, 4H), 3.50 (s, 3H), 2.96 (dd, J = 16.0, 5.2 Hz, 1H), 2.53 (dd, J = 16.0, 9.3 Hz, 1H); HRMS m/z (ESI) calcd for C$_{27}$H$_{28}$O$_6$Na (M+Na)$^+$ 471.1778, found 471.1756.
Epimeric mixture 14f: 88%; R_f 0.45 (30% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the anti-isomer δ 7.51 – 7.25 (m, 10H), 6.66 (d, $J = 8.5$ Hz, 1H), 6.39 (s, 1H), 5.99 (s, 1H), 5.92 (s, 1H), 4.75 (d, $J = 11.6$ Hz, 1H), 4.50 (d, $J = 11.6$ Hz, 1H), 4.43 (s, 2H), 3.94 (s, 3H), 3.81 (s, 3H), 3.68 – 3.32 (m, 4H), 3.51 (s, 3H), 2.93 (dd, $J = 16.0$, 5.5 Hz, 1H), 2.54 (dd, $J = 16.0$, 9.4 Hz, 1H); HRMS m/z (ESI) calcd for C$_{28}$H$_{30}$O$_7$Na (M+Na)$^+$ 501.1883, found 501.1906.

Epimeric mixture 15a: 89%; R_f 0.54 (30% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the anti-isomer δ 7.50 – 7.19 (m, 10H), 4.65 (d, $J = 11.6$ Hz, 1H), 4.44 (d, $J = 11.6$ Hz, 1H), 3.69 – 3.62 (m, 1H), 3.48 (s, 3H), 3.35 – 3.23 (m, 1H), 3.06 (dd, $J = 16.0$, 6.0 Hz, 1H), 2.62 (dd, $J = 16.0$, 8.5 Hz, 1H), 1.07 (d, $J = 6.0$ Hz, 3H); HRMS m/z (ESI) calcd for C$_{19}$H$_{22}$O$_3$Na (M+Na)$^+$ 321.1461, found 321.1452.

Epimeric mixture 15d: 80%; R_f 0.61 (30% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the anti-isomer δ 7.60 – 7.20 (m, 5H), 6.90 – 6.55 (m, 3H), 5.92 (s, 2H), 4.62 (d, $J = 11.6$ Hz, 1H), 4.44 (d, $J = 11.6$ Hz, 1H), 3.65 – 3.35 (m, 1H), 3.49 (s, 3H), 3.20 – 3.08 (m, 1H), 2.90 (dd, $J = 16.0$, 5.8 Hz, 1H), 2.51 (dd, $J = 16.0$, 8.8 Hz, 1H), 1.05 (d, $J = 6.0$ Hz, 3H); HRMS m/z (ESI) calcd for C$_{20}$H$_{22}$O$_5$Na (M+Na)$^+$ 365.1359, found 365.1364.
Epimeric mixture 15f: 82%; R_f 0.46 (30% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the anti-isomer δ 7.62 – 7.21 (m, 5H), 6.66 (d, $J = 8.0$ Hz, 1H), 6.37 (s, 1H), 5.92 (s, 2H), 4.62 (d, $J = 11.6$ Hz, 1H), 4.39 (d, $J = 11.6$ Hz, 1H), 3.85 (s, 3H), 3.63 – 3.35 (m, 1H), 3.49 (s, 3H), 3.19 – 3.08 (m, 1H), 2.97 (dd, $J = 16.0$, 6.0 Hz, 1H), 2.52 (dd, $J = 16.0$, 8.5 Hz, 1H), 1.06 (d, $J = 6.0$ Hz, 3H); HRMS m/z (ESI) calcd for C$_{21}$H$_{24}$O$_6$Na (M+Na)$^+$ 395.1465, found 395.1462.

Epimeric mixture 16a: 87%; R_f 0.35 (15% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the anti-isomer δ 7.69 – 7.57 (m, 5H), 7.47 – 7.22 (m, 15H), 4.67 (d, $J = 11.6$ Hz, 1H), 4.39 (d, $J = 11.6$ Hz, 1H), 3.72 - 3.46 (m, 4H), 3.46 (s, 3H), 2.98 (dd, $J = 16.0$, 5.0 Hz, 1H), 2.62 (dd, $J = 16.0$, 8.8 Hz, 1H), 1.04 (s, 9H); selected 1H NMR (CDCl$_3$) data for the syn-isomer δ 7.69 – 7.57 (m, 5H), 7.47 – 7.22 (m, 15H), 4.57 (d, $J = 11.8$ Hz, 1H), 4.35 (d, $J = 11.8$ Hz, 1H), 3.72 - 3.46 (m, 4H), 3.55 (s, 3H), 2.86 (dd, $J = 16.0$, 7.2 Hz, 1H), 2.72 (dd, $J = 16.0$, 8.0 Hz, 1H), 1.05 (s, 9H).

Epimeric mixture 16d: 69%; R_f 0.4 (15% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the anti-isomer δ 7.67 – 7.50 (m, 5H), 7.47 – 7.17 (m, 10H), 6.69 (d, $J = 8.0$ Hz, 3H), 5.92 (s, 2H), 4.67 (d, $J = 11.6$ Hz, 1H), 4.39 (d, $J = 11.6$ Hz, 1H), 3.72 - 3.39 (m, 4H), 3.46 (s, 3H), 2.93 (dd, $J = 16.0$, 5.0 Hz, 1H), 2.54 (dd, $J = 16.0$, 9.4 Hz, 1H), 1.04 (s, 9H); selected 1H NMR (CDCl$_3$) data for the syn-isomer δ 7.69 – 7.57 (m, 5H), 7.47 – 7.22 (m, 15H), 6.67 (d, $J = 8.0$ Hz,
3H), 5.90 (s, 2H), 4.57 (d, \(J = 11.8 \) Hz, 1H), 4.34 (d, \(J = 11.8 \) Hz, 1H), 3.72 - 3.46 (m, 4H), 3.56 (s, 3H), 2.77 (dd, \(J = 16.0, 6.9 \) Hz, 1H), 2.66 (dd, \(J = 16.0, 8.3 \) Hz, 1H), 1.05 (s, 9H).

Epimeric mixture 16f: 53%; \(R_f \) 0.6 (30% EtOAc/hexanes); selected \(^1\)H NMR (CDCl\(_3\)) data for the anti-isomer \(\delta 7.65 - 7.50 \) (m, 5H), 7.45 – 7.20 (m, 10H), 6.45 (m, 2H), 5.95 (s, 2H), 4.67 (d, \(J = 11.6 \) Hz, 1H), 4.39 (d, \(J = 11.6 \) Hz, 1H), 3.79 (s, 3H), 3.72 - 3.45 (m, 4H), 3.47 (s, 3H), 2.93 (dd, \(J = 16.0, 5.3 \) Hz, 1H), 2.52 (dd, \(J = 16.0, 9.5 \) Hz, 1H), 1.05 (s, 9H); selected \(^1\)H NMR (CDCl\(_3\)) data for the syn-isomer \(\delta 7.65 – 7.5 \) (m, 5H), 7.45 – 7.20 (m, 10H), 6.39 (s, 2H), 5.92 (s, 2H), 4.60 (d, \(J = 11.8 \) Hz, 1H), 4.36 (d, \(J = 11.8 \) Hz, 1H), 3.87 (s, 3H), 3.80 - 3.40 (m, 4H), 3.52 (s, 3H), 2.77 (dd, \(J = 16.0, 6.9 \) Hz, 1H), 2.66 (dd, \(J = 16.0, 8.3 \) Hz, 1H), 1.04 (s, 9H).

Epimeric mixture 17a: 72%; \(R_f \) 0.45 (30% EtOAc/hexanes); selected \(^1\)H NMR (CDCl\(_3\)) data for the anti-isomer \(\delta 7.55 - 7.15 \) (m, 15H), 4.80 (d, \(J = 11.6 \) Hz, 1H), 4.55 (d, \(J = 11.6 \) Hz, 1H), 4.44 (s, 2H), 3.81 – 3.73 (m, 1H), 3.58 – 3.47 (m, 1H), 3.50 (s, 3H), 3.36 (dd, \(J = 10.5, 5.2 \) Hz, 1H), 3.04 (dd, \(J = 16.0, 5.8 \) Hz, 1H), 2.64 (dd, \(J = 16.0, 9.1 \) Hz, 1H); selected \(^1\)H NMR (CDCl\(_3\)) data for the syn-isomer \(\delta 7.55 – 7.15 \) (m, 15H), 4.76 (d, \(J = 11.8 \) Hz, 1H), 4.57 (d, \(J = 11.8 \) Hz, 1H), 4.47 (s, 2H), 3.94 – 3.89 (m, 1H), 3.70 – 3.41 (m, 2H), 3.57 (s, 3H), 2.91 (dd, \(J = 16.0, 6.9 \) Hz, 1H), 2.79 (dd, \(J = 16.0, 8.3 \) Hz, 1H).
Epimeric mixture 17d: 68%; R_f 0.55 (30% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the *anti*-isomer δ 7.63 – 7.15 (m, 10H), 6.67 – 5.59 (m, 3H), 5.89 (s, 2H), 4.75 (d, $J = 11.6$ Hz, 1H), 4.50 (d, $J = 11.6$ Hz, 1H), 4.43 (s, 2H), 3.78 – 3.30 (m, 4H), 3.50 (s, 3H), 2.96 (dd, $J = 16.0$, 5.2 Hz, 1H), 2.53 (dd, $J = 16.0$, 9.3 Hz, 1H); selected 1H NMR (CDCl$_3$) data for the *syn*-isomer δ 7.63 – 7.15 (m, 10H), 6.67 – 5.59 (m, 3H), 5.91 (s, 2H), 4.72 (d, $J = 11.8$ Hz, 1H), 4.51 (d, $J = 11.8$ Hz, 1H), 4.44 (s, 2H), 3.87 – 3.79 (m, 1H), 3.78–3.30 (m, 3H), 3.56 (s, 3H), 2.78 (dd, $J = 16.0$, 6.6 Hz, 1H), 2.69 (dd, $J = 16.0$, 8.5 Hz, 1H).

![Epimeric mixture 17d](image1)

Epimeric mixture 17f: 63%; R_f 0.45 (30% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the *anti*-isomer δ 7.45 – 7.20 (m, 10H), 6.45 (d, $J = 8.5$ Hz, 1H), 6.39 (s, 1H), 5.99 (s, 1H), 5.92 (s, 1H), 4.75 (d, $J = 11.6$ Hz, 1H), 4.50 (d, $J = 11.6$ Hz, 1H), 4.43 (s, 2H), 2.94 (dd, $J = 16.0$, 5.5 Hz, 1H), 2.54 (dd, $J = 16.0$, 9.4 Hz, 1H); selected 1H NMR (CDCl$_3$) data for the *syn*-isomer δ 7.51 – 7.25 (m, 10H), 6.45 (d, $J = 8.5$ Hz, 1H), 6.39 (s, 1H), 5.99 (s, 1H), 5.92 (s, 1H), 4.43 (s, 2H), 3.94 (s, 3H), 3.81 (s, 3H), 3.68 – 3.32 (m, 4H), 3.51 (s, 3H), 2.93 (dd, $J = 16.0$, 6.9 Hz, 1H), 2.54 (dd, $J = 16.0$, 8.5 Hz, 1H).

![Epimeric mixture 17f](image2)

Epimeric mixture 18a: 65%; R_f 0.54 (30% EtOAc/hexanes); selected 1H NMR (CDCl$_3$) data for the *anti*-isomer δ 7.50 – 7.19 (m, 10H), 4.65 (d, $J = 11.6$ Hz, 1H), 4.44 (d, $J = 11.6$ Hz, 1H), 3.69 – 3.62 (m, 1H), 3.48 (s, 3H), 3.35 – 3.23 (m, 1H), 3.06 (dd, $J = 16.0$, 6.0 Hz, 1H), 2.62 (dd, $J = 16.0$, 8.5 Hz, 1H), 1.07 (d, $J = 6.0$ Hz, 3H); selected 1H NMR (CDCl$_3$) data for the *syn*-isomer δ 7.50 – 7.19 (m, 10H), 4.60 (d, $J = 11.8$ Hz, 1H), 4.46 (d, $J = 11.8$ Hz, 1H), 3.82 – 3.74 (m, 1H), 3.57 (s, 3H), 3.45 – 3.39 (m, 1H), 2.93 (dd, $J = 16.0$, 6.6 Hz, 1H), 2.78 (dd, $J = 16.0$, 8.5 Hz, 1H), 1.06 (d, $J = 6.3$ Hz, 3H).

![Epimeric mixture 18a](image3)
Epimeric mixture 18d: 56%; \(R_f \) 0.61 (30% EtOAc/hexanes); selected \(^1\)H NMR (CDCl\(_3\)) data for the anti-isomer \(\delta 7.50 - 7.20 \) (m, 5H), \(6.90 - 6.60 \) (m, 3H), 5.91 (s, 2H), 4.62 (d, \(J = 11.6 \) Hz, 1H), 4.41 (d, \(J = 11.6 \) Hz, 1H), 3.69 – 3.41 (m, 1H), 3.49 (s, 3H), 3.20 – 3.08 (m, 1H), 2.95 (dd, \(J = 16.0, 5.8 \) Hz, 1H), 2.52 (dd, \(J = 16.0, 8.8 \) Hz, 1H), 1.05 (d, \(J = 6.0 \) Hz, 3H); selected \(^1\)H NMR (CDCl\(_3\)) data for the syn-isomer \(\delta 7.50 - 7.20 \) (m, 5H), 6.90 – 6.60 (m, 3H), 5.91 (s, 2H), 4.60 (d, \(J = 11.8 \) Hz, 1H), 4.42 (d, \(J = 11.8 \) Hz, 1H), 3.84 (s, 3H), 3.80 – 3.67 (m, 1H), 3.59 (s, 3H), 3.32 – 3.21 (m, 1H), 2.84 (dd, \(J = 16.0, 6.3 \) Hz, 1H), 2.69 (dd, \(J = 16.0, 8.8 \) Hz, 1H), 1.05 (d, \(J = 6.3 \) Hz, 3H).

Epimeric mixture 18f: 54%; \(R_f \) 0.46 (30% EtOAc/hexanes); selected \(^1\)H NMR (CDCl\(_3\)) data for the anti-isomer \(\delta 7.45 - 7.21 \) (m, 5H), 6.45 (d, \(J = 8.0 \) Hz, 1H), 6.37 (s, 1H), 5.92 (s, 2H), 4.59 (d, \(J = 11.6 \) Hz, 1H), 4.41 (d, \(J = 11.6 \) Hz, 1H), 3.85 (s, 3H), 3.65 – 3.47 (m, 1H), 3.49 (s, 3H), 3.15 – 3.08 (m, 1H), 2.97 (dd, \(J = 16.0, 5.8 \) Hz, 1H), 2.52 (dd, \(J = 16.0, 8.5 \) Hz, 1H), 1.07 (d, \(J = 6.0 \) Hz, 3H); selected \(^1\)H NMR (CDCl\(_3\)) data for the syn-isomer \(\delta 7.45 - 7.21 \) (m, 5H), 6.45 (d, \(J = 8.0 \) Hz, 1H), 6.37 (s, 1H), 5.92 (s, 2H), 4.59 (d, \(J = 11.8 \) Hz, 1H), 4.40 (d, \(J = 11.8 \) Hz, 1H), 3.84 (s, 3H), 3.74 – 3.67 (m, 1H), 3.57 (s, 3H), 3.27 – 3.21 (m, 1H), 2.84 (dd, \(J = 16.0, 6.3 \) Hz, 1H), 2.67 (dd, \(J = 16.0, 8.5 \) Hz, 1H), 1.06 (d, \(J = 6.3 \) Hz, 3H).

3. References

\[1^H \]

\[\text{RnCl} \] \[\text{CEn} \] \[\text{CO}_2\text{Me} \] + \[\text{RnCl} \] \[\text{CEn} \] \[\text{CO}_2\text{Me} \]

9:1

14f

X: parts per Million: 1H