SUPPORTING INFORMATION

Regio- and Stereoselective Methoxyselenylation of Chiral 2-Vinyl Perhydro-1,3-benzoxazines Promoted by Selenium-Heteroatom Nonbonded Interactions.

Rafael Pedrosa,* Celia Andrés,* Raquel Arias, Pilar Mendiguchía and Javier Nieto

Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid
Dr. Mergelina s/n, 47011-Valladolid, Spain.
FAX: Int. + 983 423 013
E-mail: pedrosa@qo.uva.es

Table of Contents

General experimental methods and synthesis and characterization data for compounds 3g-h, 6d, 6f and 7d .. Page S2
Table of selected bond lengths (Å) and bond angles (deg.) for 4g and 4h .. Page S5
ORTEP representation of X-ray structure for 4g Page S5
ORTEP representation of X-ray structure for 4h and 8d............. Page S6
Copies of 1H NMR spectra for all compounds Page S7
Copies of 13C NMR spectra for all compounds Page S25
General Methods: All reactions were carried out in anhydrous solvents, under argon atmosphere, and in oven-dried glassware. 1H NMR (300 MHz) and 13C NMR (75 MHz) were registered in CDCl$_3$ as solvent and chemical shifts are given relative to TMS as internal reference. Specific rotations were determined on a digital polarimeter using a Na lamp and concentration is given in g per 100 mL. Melting points were determined in open capillary tubes and are uncorrected. Products were isolated by flash chromatography using silica gel 60 (230-240 mesh).

Perhydro-1,3-benzoxazines 3a-f have been previously described.27

Synthesis of Perhydrobenzoxazines 3g and 3h. A mixture of N-benzylaminomenthol (3.81 g, 14.62 mmol) and cinnamaldehyde or 2-methoxycinnamaldehyde (15 mmol) in toluene (50 mL) was refluxed until the reaction was completed (TLC). The solvent was evaporated under vacuum and the residue was chromatographed on silica gel using a mixture hexane/EtOAc 15/1 as eluent.

(2S,4aS,7R,8aR)-3-Benzyl-2-styryl-4,4,7-trimethyl-octahydrobenzo[e][1,3]oxazine (3g). Yield: 82%. Colorless solid. Mp. 121-122 ºC (from EtOH). $[^{25}$D$]_D = -61.7$ (c = 1.1, CHCl$_3$). 1H NMR (δ): 0.94-1.05 (m, 2H); 0.96 (d, 3H, $J = 6.5$ Hz); 1.08 (s, 3H); 1.15 (m, 1H); 1.25 (s, 3H); 1.45-1.65 (m, 2H); 1.66-1.74 (m, 2H); 1.99 (m, 1H); 3.60 (dt, 1H, $J_1 = 4.0$ Hz, $J_2 = 10.4$ Hz); 3.68 (d, 1H, $J = 17.1$ Hz); 4.07 (d, 1H, $J = 17.1$ Hz); 5.24 (d, 1H, $J = 4.7$ Hz); 5.91 (dd, 1H, $J_1 = 4.7$ Hz, $J_2 = 16.0$ Hz); 6.67 (d, 1H, $J = 16.0$ Hz); 7.03-7.06 (m, 2H); 7.11-7.25 (m, 6H); 7.33-7.35 (m, 2H).

(2S,4aS,7R,8aR)-3-Benzyl-2-[2-trans-(2-methoxy-phenyl)-vinyl]-4,4,7-trimethyl-octahydrobenzo[e][1,3]oxazine (3h). Yield: 80%. Colorless solid. Mp. 91-92 ºC (from EtOH). $[^{25}$D$]_D = -70.2$ (c = 1.1, CHCl$_3$). 1H NMR (δ): 0.89-1.03 (m, 2H); 0.95 (d, 3H, $J = 6.5$ Hz); 1.07 (s, 3H); 1.18 (m, 1H); 1.23 (s, 3H); 1.52-1.59 (m, 2H); 1.65-1.73 (m, 2H); 1.98 (m, 1H); 3.58 (td, 1H, $J_1 = 10.4$ Hz, $J_2 = 4.2$ Hz); 3.67 (d, 1H, $J = 17.1$ Hz); 3.73 (s, 3H); 4.07 (d, 1H, $J = 17.1$ Hz); 5.21 (d, 1H, $J = 5.2$ Hz); 5.90 (dd, 1H, $J_1 = 5.2$ Hz, $J_2 = 16.2$ Hz); 6.69-6.81 (m, 3H); 6.96 (d, 1H, $J = 16.2$ Hz); 7.11-7.13 (m, 2H); 7.20-7.25 (m, 2H); 7.34-7.37 (m, 2H). 13C NMR (CDCl$_3$) δ: 18.5; 22.3; 25.1;
27.3; 31.3; 34.9; 41.4; 47.0; 47.7; 55.2; 56.8; 75.6; 88.4; 110.4; 120.2; 125.6; 125.7; 126.8; 127.0; 127.3 (2C); 127.8 (2C); 128.4; 130.0; 144.1; 156.6. IR (Nujol): 3040, 1595, 1580, 750, 725 cm⁻¹. Anal. Calcd for C₁₇H₃₅NO₂: C, 79.96; H, 8.70; N, 3.45. Found: C, 80.09; H, 8.86; N, 3.32.

Reductive Deselenylation of compounds 4d, 4f and 5d. A mixture of AIBN (33 mg, 0.2 mmol), triphenyltin hydride (0.9 g, 2.6 mmol) and toluene (20 mL) was added dropwise via syringe (2 h) to a refluxing solution of 4d, 4f or 5d (2.2 mmol) in 60 mL of toluene under argon atmosphere. The mixture was refluxed for additional 3 h, the solvent was removed in vacuo and the residue was chromatographed on silica gel using hexane/AcOEt, 8/1 as eluent.

(2S,4aS,7R,8aR)-2-[(2S)-2-methoxy-2-(2-methoxy-phenyl)-ethyl]-4,4,7-trimethyl-octahydro-benzo[e][1,3]oxazine (6d). Yield: 80 %. Colorless oil. [α]D²⁵ = +9.0 (c = 1.0, CHCl₃). ¹H NMR (δ): 0.88-1.11 (m, 4H); 0.92 (d, 3H, J = 6.5 Hz); 1.04 (s, 3H); 1.05 (s, 3H); 1.49 (m, 1H); 1.63-1.73 (m, 3H); 1.78 (m, 1H); 1.90-1.99 (m, 2H); 3.20 (s, 3H); 3.37 (td, 1H, J₁ = 10.5 Hz, J₂ = 4.1 Hz); 3.80 (s, 3H); 4.47 (dd, 1H, J₁ = 7.3 Hz, J₂ = 4.4 Hz); 6.83 (d, 1H, J = 8.2 Hz); 6.95 (t, 1H, J = 7.5 Hz); 7.22 (dd, 1H, J₁ = 8.2 Hz, J₂ = 7.5 Hz, J₃ = 1.7 Hz); 7.35 (dd, 1H, J₁ = 7.5 Hz, J₂ = 1.7 Hz). ¹³C RMN (δ): 19.7; 22.2; 25.4; 29.9; 31.3; 34.9; 41.6; 43.1; 51.2; 51.4; 55.2; 56.5; 73.9; 74.8; 80.0; 110.1; 120.5; 127.1; 128.0; 130.2; 157.0. IR (Film): 3300, 3060, 1600, 1585, 795, 755, 670, 620 cm⁻¹. Anal. Calcd for C₂₁H₃₅NO₂: C, 72.58; H, 9.57; N, 4.03. Found: C, 72.72; H, 9.69; N, 3.91.

(2S,4aS,7R,8aR)-2-[(2R)-2-methoxy-2-(2-methoxy-phenyl)-ethyl]-4,4,7-trimethyl-octahydro-benzo[e][1,3]oxazine (6f). Yield: 83 %. Colorless oil. [α]D²⁵ = -6.5 (c = 0.8, CH₂Cl₂). ¹H NMR (δ): 0.72-1.05 (m, 4H); 0.77 (d, 3H, J = 6.5 Hz); 0.91 (s, 3H); 0.92 (s, 3H); 0.98 (d, 3H, J = 6.2 Hz); 1.29-1.39 (m, 3H); 1.46-1.62 (m, 3H); 1.78 (m, 1H); 3.17 (s, 3H); 3.24 (td, 1H, J₁ = 10.3 Hz, J₂ = 4.1 Hz); 3.38 (m, 1H); 4.27 (dd, 1H, J₁ = 7.7 Hz, J₂ = 4.3 Hz). ¹³C RMN (δ): 19.0; 19.6; 22.0; 25.2; 29.7; 31.1; 34.7; 41.5; 43.1; 50.9; 51.5; 55.7; 73.0; 74.5; 79.7. IR (Film): 3290, 2925, 1450, 765 cm⁻¹. Anal. Calcd for C₁₅H₂₉NO₂: C, 70.54; H, 11.45; N, 5.48. Found: C, 70.39; H, 11.32; N, 5.61.

(2S,4aS,7R,8aR)-2-[(2R)-2-methoxy-2-(2-methoxy-phenyl)-ethyl]-4,4,7-trimethyl-octahydro-benzo[e][1,3]oxazine (7d). Yield: 81 %. Colorless oil. [α]D²⁵ = +57.0 (c = 0.5, CHCl₃). ¹H NMR (δ): 0.88-1.11 (m, 4H); 0.91 (d, 3H, J = 6.4 Hz); 1.04 (s, 3H); 1.09 (s, 3H); 1.46 (m, 1H); 1.64-1.69 (m, 2H); 1.70-2.01 (m, 3H); 2.04 (s,
broad, 1H); 3.22 (s, 3H); 3.35 (dt, 1H, \(J_1 = 10.5 \) Hz, \(J_2 = 4.1 \) Hz); 3.81 (s, 3H); 4.43 (dd, 1H, \(J_1 = 6.6 \) Hz, \(J_2 = 4.3 \) Hz); 4.86 (dd, 1H, \(J_1 = 8.8 \) Hz, \(J_2 = 4.3 \) Hz); 6.85 (d, 1H, \(J = 8.1 \) Hz); 6.95 (dd, 1H, \(J = 8.1 \) Hz, \(J_2 = 7.5 \) Hz); 7.22 (td, 1H, \(J_1 = 8.1 \) Hz, \(J_2 = 1.6 \) Hz); 7.36 (dd, 1H, \(J_1 = 7.5 \) Hz, \(J_2 = 1.6 \) Hz). \(^{13}\)C RMN (\(\delta \)): 19.6; 22.3; 25.5; 29.9; 31.4; 35.1; 41.7; 42.5; 51.1; 51.7; 55.3; 56.7; 74.4; 74.9; 80.6; 110.2; 120.6; 126.9; 128.1; 130.2; 160.0. IR (Film): 3330, 1600, 1585, 752 cm\(^{-1}\). Anal. Calcd for C\(_{21}\)H\(_{33}\)NO\(_3\): C, 72.58; H, 9.57; N, 4.03. Found: C, 72.41; H, 9.40; N, 4.16.

Transformation of 4d into 8d. To a suspension of LiAlH\(_4\) (133 mg, 3.5 mmol) in THF (25 mL) cooled to -15 °C was added, in portions, dry AlCl\(_3\) (156 mg, 1.17 mmol). The mixture was stirred for 10 min, and a solution of 4d (352 mg, 0.7 mmol) in THF (6 mL) was slowly added. The mixture was stirred 15 min at -15 °C and quenched by addition of 10% aqueous solution of NaOH (1.0 mL). The resulting mixture was filtered, the solid was washed with EtOAc and the organic layer was dried over anhydrous MgSO\(_4\). The solvent was eliminated under reduce pressure, and the amino menthol derivative obtained (350 mg, 0.69 mmol) was redissolved in toluene and acetaldehyde (0.12 mL, 2.14 mmol) was added. The mixture was heated in a sealed tube at 80 °C for 45 hours. The product was purified by flash chromatography on silica gel using a mixture of hexane/EtOAc as eluent to obtain 278 mg (75 % yield) of 8d. Colorless solid. Mp: 134-135 °C (from EtOH). [\(\alpha \)]\(_{25}^D\) = -64.9 (c = 1.1, CH\(_2\)Cl\(_2\)). \(^1\)H NMR (CDCl\(_3\)) \(\delta \): 0.74-0.98 (m, 3H); 0.78 (d, 3H, \(J = 6.0 \) Hz); 0.80 (d, 3H, \(J = 6.5 \) Hz); 1.06 (m, 1H); 1.08 (s, 3H); 1.27 (s, 3H); 1.31 (m, 1H); 1.49 (m, 1H); 1.57 (m, 1H); 1.68 (m, 1H); 2.95 (d, 2H, \(J = 7.8 \) Hz); 3.18 (s, 3H); 3.29 (td, 1H, \(J_1 = 10.4 \) Hz, \(J_2 = 4.0 \) Hz); 3.57 (s, 3H); 3.73 (td, 1H, \(J_1 = 7.8 \) Hz, \(J_2 = 2.5 \) Hz); 4.62 (d, 1H, \(J = 2.5 \) Hz); 4.67 (q, 1H, \(J = 6.0 \) Hz); 6.69 (d, 1H, \(J = 8.2 \) Hz); 6.88 (dd, 1H, \(J_1 = 7.5 \) Hz, \(J_2 = 6.8 \) Hz); 7.08-7.21 (m, 4H); 7.28 (dd, 1H, \(J_1 = 7.5 \) Hz, \(J_2 = 1.6 \) Hz); 7.60-7.66 (m, 2H). \(^{13}\)C RMN (CDCl\(_3\)) \(\delta \): 19.6; 21.1; 22.1; 24.7; 28.0; 31.1; 34.8; 39.2; 41.1; 46.0; 53.1; 54.6; 57.0; 57.9; 75.4; 79.1; 82.4; 110.0; 120.3; 126.5 (2C); 127.3; 128.0; 128.2 (2C); 131.9; 134.7 (2C); 156.4. IR (Nujol): 3040, 1595, 1585, 1575, 875, 860, 760, 740, 690 cm\(^{-1}\). Anal. Calcd for C\(_{29}\)H\(_{41}\)NO\(_3\)Se: C, 65.64; H, 7.79; N, 2.64. Found: C, 65.79; H, 7.84; N, 2.59.
Selected structural parameters for 4g and 4h in the solid state determined by X-ray crystallographic analysis,

<table>
<thead>
<tr>
<th>Parameter</th>
<th>4g</th>
<th>4h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interatomic Se···O distance (Å)</td>
<td>2.765</td>
<td>2.773</td>
</tr>
<tr>
<td>C(12)-Se(1)-C(13) (deg)</td>
<td>96.500</td>
<td>96.971</td>
</tr>
<tr>
<td>C(12)-Se(1)-O(1) (deg)</td>
<td>58.362</td>
<td>58.346</td>
</tr>
<tr>
<td>O(1)-Se(1)-C(13) (deg)</td>
<td>154.859</td>
<td>154.810</td>
</tr>
<tr>
<td>O(1)-C(1)-C(12)-Se(1) (deg)</td>
<td>16.234</td>
<td>16.566</td>
</tr>
</tbody>
</table>

Ortep representation of X-Ray structure of 4g
Ortep representation of X-Ray structure of 4h

Ortep representation of X-Ray structure of 8d