Supplementary information

Teilum, K.; Brath, U.; Lundström, P.; Akke, M.

“Biosynthetic 13C labeling of aromatic side-chains in proteins for NMR relaxation measurements”.
Supplementary Figure 1. The pulse sequence used to measure aromatic 13C R_{1p} relaxation rates. Narrow and wide bars indicate RF-pulses of 90° and 180° flip-angles, respectively, while very wide bars indicate spinlock or broad-band decoupling. All pulses are applied with phase x, unless otherwise indicated. Pulses on 1H are applied with the carrier frequency centered on the water resonance. Pulses on 13C were centered at 132.5 ppm, except during the spin-lock period when the carrier was shifted to the desired offset. Adiabatic alignment of the magnetizations with their respective effective fields during the spin-lock relaxation period, and subsequent return to the z-axis, were achieved using tan/tanh RF frequency/amplitude ramps. The adiabatic frequency sweep was initiated 25 kHz downfield of the final spin-lock carrier frequency. Decoupling during acquisition was achieved with the GARP-1 sequence using an RF field strength of $\gamma B_1/2\pi = 2150$ Hz. A continuous-wave RF field was applied far off resonance on the 13C channel to avoid differential heating for different relaxation delays and field strengths (not shown). The delay τ_{xh} was adjusted to $1/J_{CH}$ and Δ was set to 0.6 ms. The phase cycle was $\phi_1 = x, -x$; $\phi_2 = x$; $\phi_3 = x, x, y, -x, -x, -y, -y$; $\phi_4 = x$; $\phi = x, -x, -x, x$. Gradient strengths in units of G/cm (lengths in units of ms) were: $g_0 = 5000$ (1.0); $g_1 = 4000$ (0.8); $g_2 = 13000$ (1.0); $g_3 = 5000$ (0.8); $g_4 = -17000$ (1.2); $g_5 = 13000$ (0.8); $g_6 = 500$ (t_1); $g_7 = 15000$ (1.0); $g_8 = 4000$ (1.0); $g_9 = 500$ (1.0); $g_{10} = 15000$ (1.0).
4000 (1.0); g10 = 14920 (0.25). Sensitivity-enhanced quadrature detection in t_1 was achieved by inverting ϕ_1 and reversing the sign of g_{10}. The phases ϕ_2 and ϕ were inverted in every other increment to achieve States-TPPI phase cycling. $R_{1\rho}$ rates were measured at eleven effective fields and the decays were sampled at eight points including one duplicate. The maximum relaxation delay at each field was adjusted to approximately $t_{SL} = 1/R_{1\rho}$. On-resonance data points were recorded with spin-lock field strengths of 559, 732, 1142, 1796, 2729, 3760 and 4648 Hz, and off-resonance points with a spin-lock field of 4648 Hz and offsets of 1000, 2000, 4000, 8000 and 20000 Hz.
Supplementary Figure 2. Relaxation dispersion curves for all aromatic 13C nuclei in E140Q-Tr2C expressed on [1-13C]-glucose. 13C$^{\delta}$ in Phe (F89, F92 and F141) and Tyr (Y99 and Y138), and 13C$^{\varepsilon 1}$ in His (H107). All data were processed using the NMRPipe/NMRDraw software package. Mono-exponential functions were fitted to the R_{1p} decay curves at each tilt angle, with errors in peak intensities estimated from duplicate measurements. R_{1p} dispersion curves were fitted using simplex routines in Matlab (The Mathworks, Inc.). Two models were fitted to each dispersion curve: a two-parameter model including R_1 and $R_{2,0}$, and a four-parameter model including R_1, $R_{2,0}$, τ_{ex} and $\phi_{ex} = p_A p_B (\Delta \omega)^2$. The statistically significant improvement of the four-parameter model over the two-parameter model was assessed from the F-statistic, with the more complex model being accepted if $p < 0.05$. Errors in the fitted parameters were estimated by the jackknife procedure.
References

(4) Shaka, A. J.; Barker, P. B.; Freeman, R. J. Magn. Reson. 1985, 64, 547-552.

