Supporting Information

Organocatalytic Asymmetric Michael Addition of 2,4-Pentandione to Nitroolefins

Jian Wang, † Hao Li, † Wenhu Duan, $^{\sharp}$ Liansuo Zu, † Wei Wang, †,*

Academy of Sciences, Shanghai, 201203, People's Republic of China

[†]Department of Chemistry, University of New Mexico, Albuquerque, NM 87131-0001, USA

[‡]Shanghai Institute of Materia Medica, Shanghai Institutes of Biological Sciences, Chinese

Table of Content

Page	Description
S3	General method
S3-S5	Procedures for preparation of binapthyl-based thiourea catalyst VI and its characterizations
S5	Typical Procedure for Michael addition reaction
S5-S9	Characterization data (¹ H, ¹³ C and HRMS) of Michael addition reaction products for Table 2
S9-S10	Procedures for synthesis of (R) α -phenyl- β -alanine 4a (Scheme 1) and compound characterizations
S10	References

General Information: Commercial reagents were used as received, unless otherwise stated. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with fluorescence F_{254} indicator were used for thin-layer chromatography (TLC) analysis. ¹H and ¹³C NMR spectra were recorded on Bruker Advance 500, and tetramethylsilane (TMS) was used as a reference. Data for ¹H are reported as follows: chemical shift (ppm), and multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet). High resolution mass spectra (HRMS) are obtained from Department of Chemistry, Ohio State University MS facility.

Procedures for preparation of binapthyl-based thiourea catalyst VI.

Figure. Synthesis of binapthyl-based thiourea catalyst VI.

(*R*)-*N*-(1-(2-Aminonaphthalen-1-yl)naphthalen-2-yl)acetamide^[1] (1). To a solution of (*R*)-(+)-1,1'-Binaphthyl-2,2'-diamine (284.0 mg, 1.0 mmol) and AcOH (0.6 mL, 10 mmol) in 10 mL of dried CH₂Cl₂ was added acetic anhydride (104 μL, 1.0 mmol) at 0 °C under N₂. The resulting solution was stirred for overnight at room temperature, then 2*N* NaOH aqueous solution was added to adjust the solution to pH ≈ 7. The reaction mixture was extracted by CH₂Cl₂ (3 × 50 mL) and the combined organic phases were washed with saturated brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (ethyl acetate/hexane = 2/1) to afford a colorless oil in 77% yield (0.25 g, 0.77 mmol). ¹H NMR (500 MHz, CDCl₃, TMS): δ = 8.63 (dd, ³*J*(H,H) = 8.0 Hz, ³*J*(H,H) = 4.5 Hz, 1H; Ar), 7.99 (d, ³*J*(H,H) = 9.0 Hz, 1H; Ar), 7.90 (d, ³*J*(H,H) = 8.0 Hz, 1H; Ar), 7.85 (d, ³*J*(H,H) = 9.0 Hz, 1H; Ar), 7.81 (d, ³*J*(H,H) = 8.0 Hz, 1H; Ar), 7.40 (t, ³*J*(H,H) = 9.0 Hz, 1H; Ar), 7.27-7.12 (m, 5H; CH), 7.04 (s, 1H; NH), 6.91 (d, ³*J*(H,H) = 8.0 Hz, 1H; Ar), 3.65 (s, 2H; NH₂), 1.84 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): δ = 168.7, 142.7, 135.0, 134.9, 133.5, 132.3, 131.2, 130.3, 129.2, 128.2, 128.1, 127.3, 126.8, 125.4, 125.1, 123.6, 122.7, 120.9, 120.8,

118.0, 110.3, 24.6.

(R)-N-(1-(2-(Dimethylamino)naphthalen-1-vl)naphthalen-2-vl)acetamide^[2] (2). A solution of N-(1-(2-aminonaphthalen-1-yl)naphthalen-2-yl)acetamide 1 (0.25 g, 0.77 mmol) and aqueous formaldehyde (37%, 0.75 mL, 9.0 mmol) in 10 mL of THF was stirred for 15 min. NaBH₃CN (200.0 mg, 5.3 mmol) was added and stirred for 15 min, following by addition of AcOH (1.0 mL). The resulting solution was stirred for 4 h at room temperature, then 1N NaOH aqueous solution was added to adjust the solution to pH \approx 7. The reaction mixture was extracted by CH₂Cl₂ (3 × 50 mL) and the combined organic phases were washed with saturated brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (ethyl acetate/hexane = 1/5) to afford a brown powder in a quantitative yield (272 mg, 0.77 mmol). ¹H NMR (500 MHz, CDCl₃, TMS): δ = $8.48 \text{ (d, }^{3}J(H,H) = 9.0 \text{ Hz, } 1H; \text{ Ar)}, 7.96 \text{ (d, }^{3}J(H,H) = 8.5 \text{ Hz, } 2H; \text{ Ar)}, 7.88 \text{ (d, }^{3}J(H,H) = 8.0 \text{ Hz, } 1H; \text{ Ar)}$ 1H; Ar), 7.83 (d, ${}^{3}J(H,H) = 8.0 \text{ Hz}$, 1H; Ar), 7.53 (s, 1H; NH), 7.49 (d, ${}^{3}J(H,H) = 9.0 \text{ Hz}$, 1H; Ar), 7.38 (t, ${}^{3}J(H,H) = 8.0 \text{ Hz}$, 1H; Ar), 7.31 (t, ${}^{3}J(H,H) = 7.0 \text{ Hz}$, 1H; Ar), 7.22 (t, ${}^{3}J(H,H) = 7.0 \text{ Hz}$ Hz, 1H; Ar), 7.16-7.11 (m, 2H; Ar), 6.93 (d, ${}^{3}J(H,H) = 8.5$ Hz, 1H; Ar), 2.65 (s, 6H; CH₃), 1.86 (s, 3H; CH₃); 13 C NMR (125 MHz, CDCl₃, TMS): $\delta = 169.2$, 149.5, 133.6, 133.4, 131.2, 130.1, 129.7, 128.6, 128.2, 127.9, 126.8, 126.5, 126.4, 125.3, 125.0, 124.1, 121.8, 121.5, 118.6, 118.0, 48.6, 43.4, 24.4.

(R)-1-(2-(Dimethylamino)naphthalen-1-yl)naphthalen-2-amine^[2] (3). To a solution of N-(1-(2-(dimethylamino)naphthalen-1-yl)naphthalen-2-yl)acetamide 2 (0.18 g, 0.51 mmol) in 15 mL of EtOH was added 4M HCl (6 mL). The resulting solution was stirred for overnight at room temperature, then 1N NaOH aqueous solution was added to adjust the solution to pH ≈ 7 . The reaction mixture was extracted by CH₂Cl₂ (3 × 50 mL) and the combined organic phases were washed with saturated brine and dried over MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (ethyl acetate/hexane = 1/10) to afford a colorless oil in 93% yield (148 mg, 0.47 mmol). ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 7.90$ (d, ${}^{3}J(H,H) = 9.0$ Hz, 1H; Ar), 7.81 (d, ${}^{3}J(H,H) = 8.0$ Hz, 1H; Ar), 7.77 (d, ${}^{3}J(H,H) = 8.0 \text{ Hz}$, 2H; Ar), 7.47 (d, ${}^{3}J(H,H) = 9.0 \text{ Hz}$, 1H; Ar), 7.29-7.10 (m, 6H; Ar), 7.02 (d, ${}^{3}J(H,H) = 8.5 \text{ Hz}$, 1H; Ar), 3.67 (s, 2H; NH₂), 2.59 (s, 6H; CH₃); ${}^{13}C$ NMR (125) MHz, CDCl₃, TMS): $\delta = 150.4$, 141.8, 134.2, 133.7, 129.7, 129.1, 128.8, 128.3, 127.9, 127.8, 126.5, 126.2, 124.9, 123.6, 122.1, 121.9, 119.5, 118.4, 116.8, 43.3.

(*R*)-1-(3,5-Bis(trifluoromethyl)phenyl)-3-(1-(2-(dimethylamino)naphthalen-1-yl)naphthalen -2-yl)thiourea (*VI*). To a solution of 1-(2-(dimethylamino)naphthalen-1-yl)naphthalen-2-amine 3 (36.0 mg, 0.12 mmol) in 2 mL of dried CH₂Cl₂ was added 3,5-bis(trifluoromethyl)phenyl isothiocyanate (22.0 mg, 0.132 mmol) at 0 °C under N₂. The resulting solution was stirred for overnight at room temperature. The reaction mixture was concentrated *in vacuo* and then the crude product was purified by flash chromatography (ethyl acetate/hexane = 1/10) to afford a slight yellow solid in 91% yield (64 mg, 0.11 mmol). [α]²⁵_D = -8.3 (c = 0.5 in CHCl₃); ¹H NMR (500 MHz, CDCl₃, TMS): δ = 8.37 (s, 1H; NH), 8.06 (d, ³*J*(H,H) = 8.5 Hz, 1H; Ar), 7.98 (d, ³*J*(H,H) = 9.0 Hz, 2H; Ar), 7.82 (d, ³*J*(H,H) = 8.0 Hz, 1H; Ar), 7.71 (d, ³*J*(H,H) = 8.5 Hz, 1H; Ar), 7.56-7.50 (m, 5H; Ar), 7.41 (s, 1H; NH), 7.36 (s, 2H; Ar), 7.26 (m, 2H; Ar), 7.09 (t, ³*J*(H,H) = 7.5 Hz, 1H; Ar), 6.90 (d, ³*J*(H,H) = 7.5 Hz, 1H; Ar), 2.59 (s, 6H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): δ = 179.7, 149.9, 139.6, 134.0, 133.3, 133.2, 132.9, 132.0, 131.8, 131.6, 130.5, 130.0, 129.9, 128.5, 128.4, 127.5, 127.2, 126.8, 125.0, 124.6, 124.2, 123.9, 122.9, 121.8, 118.9, 44.0. HRMS (EI) calcd for C₃₁H₂₃N₃SF₆ + Na⁺ 606.1409, obsd 606.1415.

Typical Procedure for Michael Addition Reaction: The catalyst amino-thiourea **VI** (1.0 mg, 0.0017 mmol) was added to a vial containing 2,4-pentanedione **1a** (38 μL, 0.34 mmol) and *trans*-β-nitrostyrene **2a** (26.0 mg, 0.17 mmol) in Et₂O (1 mL) at room temperature. After 28 h of stirring, TLC analysis indicated completion of the reaction. The reaction mixture was concentrated *in vacuo*. The residue was purified by flash silica gel chromatography (ethyl acetate/hexane=1:10 to 1:3) to afford 37 mg (87%) of the adduct as a white solid.

3-((*R***)-2-Nitro-1-phenylethyl)pentane-2,4-dione^[3]** (Table 2, entry 1): The title compound (known compound) was prepared according the typical procedure, as described above in 87% yield. HPLC (Chiralpak AS-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm): t_{minor} = 14.5 min, t_{major} = 23.9 min, ee = 95%; $[\alpha]^{25}_{D}$ (major) = -147.6 (c = 3.0 in CHCl₃).

3-((R)-2-Nitro-1-*p***-tolylethyl)pentane-2,4-dione** (Table 2, entry 2): The title compound was prepared according the typical procedure, as described above in 84% yield. ¹H NMR (500

MHz, CDCl₃, TMS): δ = 7.12 (d, ${}^{3}J(H,H)$ = 8.0 Hz, 2H; Ph), 7.06 (d, ${}^{3}J(H,H)$ = 8.0 Hz, 2H; Ph), 4.65-4.57 (m, 2H; CH₂), 4.36 (d, ${}^{3}J(H,H)$ = 11.0 Hz, 1H; CH), 4.24-4.17 (m, 1H; CH), 2.30 (s, 3H; CH₃), 2.29 (s, 3H; CH₃), 1.94 (s, 3H; CH₃); ${}^{13}C$ NMR (125 MHz, CDCl₃, TMS): δ = 201.9, 201.1, 138.3, 132.7, 130.0, 127.7, 78.3, 70.8, 42.4, 30.4, 29.4, 21.0; HPLC (Chiralpak AS-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm): t_{minor} = 11.8 min, t_{major} = 18.8 min, ee = 93%; $[\alpha]_{D}^{25}$ (major) = -71.9 (c = 3.0 in CHCl₃). HRMS (EI) calcd for $C_{14}H_{17}NO_{4} + Na^{+}$ 286.1050, obsd 286.1042

3-((*R***)-1-(4-Methoxyphenyl)-2-nitroethyl)pentane-2,4-dione** (Table 2, entry 3): The title compound was prepared according the typical procedure, as described above in 92% yield. 1 H NMR (500 MHz, CDCl₃, TMS): δ = 7.10 (d, 3 *J*(H,H) = 8.5 Hz, 2H; Ph), 6.84 (d, 3 *J*(H,H) = 8.5 Hz, 2H; Ph), 4.61-4.57 (m, 2H; CH₂), 4.35 (d, 3 *J*(H,H) = 11.0 Hz, 1H; CH), 4.24-4.18 (m, 1H; CH), 3.78 (s, 3H; OCH₃), 2.29 (s, 3H; CH₃), 1.95 (s, 3H; CH₃); 13 C NMR (125 MHz, CDCl₃, TMS): δ = 201.8, 201.1, 159.4, 129.0, 127.5, 114.6, 78.4, 70.8, 55.1, 42.0, 30.3, 29.4; HPLC (Chiralpak AD, *i*-propanol/hexane = 20/80, flow rate 0.8 mL/min, λ = 210 nm): t_{minor} = 11.0 min, t_{major} = 15.2 min, ee = 97%; $[\alpha]^{25}_{D}$ (major) = -108.3 (c = 2.7 in CHCl₃). HRMS (EI) calcd for $C_{14}H_{17}NO_5 + Na^+$ 302.0999, obsd 302.1005.

3-((*R***)-1-(4-(Benzyloxy)phenyl)-2-nitroethyl)pentane-2,4-dione** (Table 2, entry 4): The title compound was prepared according the typical procedure, as described above in 90% yield. ¹H NMR (500 MHz, CDCl₃, TMS): δ = 7.42-7.33 (m, 5H; Ph), 7.10 (d, ³*J*(H,H) = 8.5 Hz, 2H; Ph), 6.91 (d, ³*J*(H,H) = 8.5 Hz, 2H; Ph), 5.00 (s, 2H; OCH₂), 4.62-4.56 (m, 2H; CH), 4.33 (d, ³*J*(H,H) = 10.5 Hz, 1H; CH), 4.23-4.16 (m, 1H; CH), 2.29 (s, 3H; CH₃), 1.95 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): δ = 201.8, 201.1, 158.7, 136.5, 129.1, 128.6, 128.1, 127.9, 127.5, 115.5, 78.4, 70.9, 70.0, 42.1, 30.4, 29.5; HPLC (Chiralpak AD, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, λ = 210 nm): t_{minor} = 8.9 min, t_{major} = 11.6 min, ee = 94%; $[\alpha]^{25}$ _D (major) = -78.8 (c = 2.7 in CHCl₃). HRMS (EI) calcd for C₂₀H₂₁NO₅ + Na⁺ 378.1312, obsd 378.1313.

3-((R)-1-(4-Chlorophenyl)-2-nitroethyl)pentane-2,4-dione (Table 2, entry 5): The title compound was prepared according the typical procedure, as described above in 91% yield. ¹H

NMR (500 MHz, CDCl₃, TMS): δ = 7.32 (d, ${}^{3}J(H,H)$ = 8.5 Hz, 2H; Ph), 7.14 (d, ${}^{3}J(H,H)$ = 8.5 Hz, 2H; Ph), 4.65-4.60 (m, 2H; CH₂), 4.33 (d, ${}^{3}J(H,H)$ = 11.0 Hz, 1H; CH), 4.27-4.20 (m, 1H; CH), 2.29 (s, 3H; CH₃), 1.98 (s, 3H; CH₃); ${}^{13}C$ NMR (125 MHz, CDCl₃, TMS): δ = 201.4, 200.6, 134.5, 129.5, 129.3, 77.9, 70.4, 42.1, 30.4, 29.7; HPLC (Chiralpak AS-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm): t_{minor} = 16.5 min, t_{major} = 34.7 min, ee = 97%; $[\alpha]_{D}^{25}$ (major) = -89.2 (\underline{c} = 3.0 in CHCl₃). HRMS (EI) calcd for C₁₃H₁₄NO₄Cl + Na⁺ 306.0503, obsd 306.0508.

3-((*R***)-1-(4-Bromophenyl)-2-nitroethyl)pentane-2,4-dione** (Table 2, entry 6): The title compound was prepared according the typical procedure, as described above in 89% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 7.47$ (d, ³*J*(H,H) = 8.5 Hz, 2H; Ph), 7.08 (d, ³*J*(H,H) = 8.5 Hz, 2H; Ph), 4.65-4.58 (m, 2H; CH₂), 4.33 (d, ³*J*(H,H) = 10.5 Hz, 1H; CH), 4.26-4.19 (m, 1H; CH), 2.29 (s, 3H; CH₃), 1.98 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 201.3$, 200.5, 135.0, 132.5, 129.6, 122.6, 77.8, 70.4, 42.1, 30.4, 29.7; HPLC (Chiralpak AS-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm): $t_{minor} = 17.1$ min, $t_{major} = 32.3$ min, ee = 95%; $[\alpha]^{25}_{D}$ (major) = -37.2 (c = 1.2 in CHCl₃). HRMS (EI) calcd for C₁₃H₁₄NO₄Br + Na⁺ 349.9998, obsd 349.9987.

3-((*R***)-1-(2-(Benzyloxy)phenyl)-2-nitroethyl)pentane-2,4-dione** (Table 2, entry 7): The title compound was prepared according the typical procedure, as described above in 80% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 7.52-7.35$ (m, 5H; Ph), 7.28-7.22 (m, 1H; Ph), 7.10 (dd, ${}^{3}J(H,H) = 7.5$ Hz, ${}^{3}J(H,H) = 1.0$ Hz, 1H; Ph), 6.96 (d, ${}^{3}J(H,H) = 8.0$ Hz, 1H; Ph), 6.90 (t, ${}^{3}J(H,H) = 7.5$ Hz, 1H; Ph), 5.12 (s, 2H; OCH₂), 4.80 (dd, ${}^{3}J(H,H) = 11.5$ Hz, ${}^{2}J(H,H) = 7.5$ Hz, 1H; CH₂), 4.58-4.47 (m, 3H; CH, CH₂), 2.18 (s, 3H; CH₃), 1.91 (s, 3H; CH₃); ${}^{13}C$ NMR (125 MHz, CDCl₃, TMS): $\delta = 202.2$, 201.5, 156.2, 136.3, 130.4, 129.7, 128.8, 128.4, 127.8, 123.6, 121.4, 122.5, 76.3, 70.6, 68.8, 39.0, 30.5, 28.5; HPLC (Chiralpak AS-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm): $t_{minor} = 14.4$ min, $t_{major} = 15.9$ min, ee = 89 %; $[\alpha]^{25}D$ (major) = -44.5 (c = 1.0 in CHCl₃). HRMS (EI) calcd for $C_{20}H_{21}NO_{5} + Na^{+}$ 378.1312, obsd 378.1323.

3-((R)-1-(2-Methoxyphenyl)-2-nitroethyl)pentane-2,4-dione (Table 2, entry 8): The title

compound was prepared according the typical procedure, as described above in 92% yield. 1 H NMR (500 MHz, CDCl₃, TMS): δ = 7.27 (dd, 3 *J*(H,H) = 16.0 Hz, 3 *J*(H,H) = 1.5 Hz, 1H; Ph), 7.08 (dd, 3 *J*(H,H) = 8.0 Hz, 3 *J*(H,H) = 1.5 Hz, 1H; Ph), 6.95-6.86 (m, 2H; Ph), 4.78 (dd, 3 *J*(H,H) = 12.5 Hz, 2 *J*(H,H) = 8.0 Hz, 1H; CH₂), 4.63-4.56 (m, 2H; CH, CH₂), 4.52-4.46 (m, 1H; CH), 3.88 (s, 3H; OCH₃), 2.28 (s, 3H; CH₃), 1.94 (s, 3H; CH₃); 13 C NMR (125 MHz, CDCl₃, TMS): δ = 202.3, 201.6, 157.0, 130.2, 129.7, 123.4, 121.1, 111.2, 76.5, 68.9, 55.4, 38.9, 30.4, 28.7; HPLC (Chiralcel OD-H, *i*-propanol/hexane = 15/85, flow rate 0.5 mL/min, λ = 210 nm): t_{minor} = 37.9 min, t_{major} = 40.8 min, ee = 97 %; $[\alpha]^{25}$ _D (major) = -108.5 (c = 2.7 in CHCl₃). HRMS (EI) calcd for $C_{14}H_{17}NO_{5} + Na^{+}$ 302.0999, obsd 302.0998.

3-((*R***)-1-(2-(Trifluoromethyl)phenyl)-2-nitroethyl)pentane-2,4-dione** (Table 2, entry 9): The title compound was prepared according the typical procedure, as described above in 86% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 7.75$ (d, ³*J*(H,H) = 7.5 Hz, 1H; Ph), 7.53 (t, ³*J*(H,H) = 7.5 Hz, 1H; Ph), 7.45 (t, ³*J*(H,H) = 7.5 Hz, 1H; Ph), 7.27 (d, ³*J*(H,H) = 7.5 Hz, 1H; Ph), 4.85 (dd, ³*J*(H,H) = 12.0 Hz, ²*J*(H,H) = 5.5 Hz, 1H; CH₂), 4.70-4.60 (m, 3H; CH, CH₂), 2.32 (s, 3H; CH₃), 2.01 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 201.9$, 200.6, 134.8, 132.6, 128.6, 127.3, 127.2, 77.6, 69.7, 37.5, 31.2, 28.3; HPLC (Chiralcel OD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 210$ nm): t_{minor} = 12.3 min, t_{major} = 13.1 min, ee = 93 %; [α]²⁵_D (major) = -77.7 (c = 2.8 in CHCl₃). HRMS (EI) calcd for C₁₄H₁₄NO₄F₃ + Na⁺ 340.0767, obsd 340.0778.

3-((*R***)-1-(2,4-Dimethoxyphenyl)-2-nitroethyl)pentane-2,4-dione** (Table 2, entry 10): The title compound was prepared according the typical procedure, as described above in 88% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 6.97$ (d, ³*J*(H,H) = 8.5 Hz, 1H; Ph), 6.44 (d, ³*J*(H,H) = 2.0 Hz, 1H; Ph), 6.40 (dd, ³*J*(H,H) = 8.0 Hz, ³*J*(H,H) = 2.5 Hz, 1H; Ph), 4.74 (dd, ³*J*(H,H) = 12.0 Hz, ²*J*(H,H) = 8.0 Hz, 1H; CH₂), 4.59-4.51 (m, 2H; CH, CH₂), 4.43 (ddd, ³*J*(H,H) = 12.0 Hz, ²*J*(H,H) = 8.0 Hz, ³*J*(H,H) = 4.0 Hz, 1H; CH), 3.86 (s, 3H; OCH₃), 3.77 (s, 3H; OCH₃), 2.28 (s, 3H; CH₃), 1.93 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 201.9$, 200.6, 134.8, 132.6, 128.6, 127.3, 127.2, 77.6, 69.7, 37.5, 31.2, 28.3; HPLC (Chiralpak AS-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm): t_{minor} = 20.4 min, t_{major} = 22.6 min, ee = 91 %; $[\alpha]^{25}_{D}$ (major) = -58.1 (c = 0.8 in CHCl₃). HRMS (EI) calcd for C₁₅H₁₉NO₆ + Na⁺ 332.1104, obsd 332.1111.

3-((*R***)-1-(3-(Benzyloxy)-4-methoxyphenyl)-2-nitroethyl)pentane-2,4-dione** (Table 2, entry 11): The title compound was prepared according the typical procedure, as described above in 78% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 7.45$ -7.28 (m, 5H; Ph), 6.81 (d, ³*J*(H,H) = 8.5 Hz, 1H; Ph), 6.71 (dd, ³*J*(H,H) = 8.0 Hz, ³*J*(H,H) = 1.5 Hz, 1H; Ph), 6.66 (d, ³*J*(H,H) = 1.5 Hz, 1H; Ph), 5.13 (dd, ³*J*(H,H) = 11.5 Hz, ²*J*(H,H) = 7.0 Hz, 2H; CH₂), 4.53 (d, ³*J*(H,H) = 6.0 Hz, 2H; OCH₂), 4.22 (d, ³*J*(H,H) = 11.0 Hz, 1H; CH), 4.12-4.06 (m, 1H; CH), 3.86 (s, 3H; CH₃), 2.24 (s, 3H; CH₃), 1.78 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 201.8$, 201.1, 149.7, 148.1, 136.7, 128.6, 128.0, 127.9, 127.4, 120.8, 114.0, 112.0, 78.3, 71.0, 70.7, 55.9, 42.3, 30.3, 29.4; HPLC (Chiralpak AS-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm): $t_{minor} = 27.9$ min, $t_{major} = 49.4$ min, ee = 88 %; $[\alpha]^{25}_{D}$ (major) = -43.8 (c = 1.5 in CHCl₃). HRMS (EI) calcd for $C_{21}H_{23}NO_6 + Na^+$ 408.1418, obsd 408.1435.

3-((*R***)-1-(2,3-Dimethoxyphenyl)-2-nitroethyl)pentane-2,4-dione** (Table 2, entry 12): The title compound was prepared according the typical procedure, as described above in 87% yield. ¹H NMR (500 MHz, CDCl₃, TMS): $\delta = 6.98$ (t, ³*J*(H,H) = 8.0 Hz, 1H; Ph), 6.86 (d, ³*J*(H,H) = 8.0 Hz, 1H; Ph), 6.67 (d, ³*J*(H,H) = 8.0 Hz, 1H; Ph), 4.76 (dd, ³*J*(H,H) = 12.0 Hz, ²*J*(H,H) = 8.0 Hz, 1H; CH₂), 4.66 (dd, ³*J*(H,H) = 12.0 Hz, ³*J*(H,H) = 4.0 Hz, 1H; CH), 4.60-4.54 (m, 1H; CH), 4.47 (d, ³*J*(H,H) = 10.0 Hz, 1H; CH₂), 3.96 (s, 3H; CH₃), 3.86 (s, 3H; CH₃), 2.25 (s, 3H; CH₃), 2.04 (s, 3H; CH₃); ¹³C NMR (125 MHz, CDCl₃, TMS): $\delta = 202.4$, 201.4, 152.8, 146.7, 129.1, 124.3, 120.2, 112.5, 76.9, 69.5, 60.8, 55.6, 37.4, 30.9, 29.0; HPLC (Chiralpak AS-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm): $t_{minor} = 13.6$ min, $t_{major} = 16.8$ min, ee = 92 %; $[\alpha]^{25}_{D}$ (major) = -104.0 (c = 2.8 in CHCl₃). HRMS (EI) calcd for $C_{15}H_{19}NO_6 + Na^+$ 332.1104, obsd 332.1120.

Procedures for synthesis of (R) α -phenyl- β -alanine 4a (Scheme 1):

Baeyer-Villiger oxidation of 3a: To a stirred suspension of **3a** (124.5 mg, 0.5 mmol), K₂CO₃ (691 mg, 5 mmol, 10 equiv.), and TBAI (37.0 mg, 0.1 mmol, 20 mol%) in CH₂Cl₂, acetone, and

water (1/1/1, 15 mL) was added a solution of Oxone® (1.5 g, 2.5 mmol, 5 equiv.) in 15 mL of water over 30 min at 0 °C. When completed the addition, the resulting white suspension was diluted with water and extracted with CH_2Cl_2 . Organic extract was dried over Na_2SO_4 and filtrated. After concentrated, the resulting clear oil α-acetoxy-γ-nitroketone was used for next reaction without further purification. Diastereomer **A**: 1H NMR (500 MHz, CDCl₃, TMS): δ = 7.30-7.17 (m, 5H; Ph), 4.76-4.60 (m, 3H; CH, CH₂), 4.53 (d, J = 4.5 Hz, 1H; CH), 2.31 (s, 3H; OCH₃), 2.03 (s, 3H; CH₃). Diastereomer **B**: 1H NMR (500 MHz, CDCl₃, TMS): δ = 7.30-7.17 (m, 5H; Ph), 4.76-4.60 (m, 3H; CH, CH₂), 4.51 (d, J = 4.5 Hz, 1H; CH), 2.55 (s, 3H; OCH₃), 1.95 (s, 3H; CH₃).

Synthesis of (R) α -phenyl- β -alanine 4a: To a solution of crude α -acetoxy- γ -nitroketone in 5 mL of toluene was added a 1 M solution of DIBAH in Et₂O (1.8 mL, 1.8 mmol) at -78 °C under N₂. Resulting solution was stirred for 2 h and quenched with 1 M aqueous solution of NaHSO₄. The mixture was extracted with CH₂Cl₂ and the organic phase was dried over MgSO₄. The crude residue was used for next reaction without further purification. The obtained crude diol was dissolved into 2 mL of 1,4-dioxane under N₂. To the solution was added H₂O (1 mL), Na₂CO₃ (27 mg, 0.26 mmol), NaIO₄ (434 mg, 2.0 mmol), and KMnO₄ (16 mg, 0.1 mmol) at room temperature and the resulting biphasic solution was stirred for 24 h. The reaction mixture was diluted with EtOAc and 1 M aqueous solution of NaHSO₄. After phase-separation, the organic phase was concentrated. The residue was dissolved into MeOH (10 mL) for hydrogenation with 10% Pd/C at 50 psi for overnight. The resulting solution was dissolved into saturated aqueous NaHCO₃ and extracted with Et₂O. The aqueous solution passed through a small pad of celite. Recrystallization from ethanol/water gave the title compound 4a as a white solid in 38% yield (4 steps) ($[\alpha]^{25}_D = +88.2$, c = 0.5, H₂O). ¹H NMR (500 MHz, D₂O, TMS): δ = 7.46-7.29 (m, 5H; Ph), 3.78 (dd, ${}^{3}J(H,H) = 7.5 \text{ Hz}$, ${}^{2}J(H,H) = 7.5 \text{ Hz}$, 1H; CH₂), 3.45 (dd, $^{3}J(H,H) = 12.5 \text{ Hz}, ^{2}J(H,H) = 8.0 \text{ Hz}, 1H; CH), 3.27 (dd, ^{3}J(H,H) = 12.5 \text{ Hz}, ^{2}J(H,H) = 7.5 \text{ Hz},$ 1H; CH₂); ¹³C NMR (125 MHz, D₂O+CD₃OD, TMS): $\delta = 179.1$, 138.6, 130.3, 129.3, 129.0, 52.6, 43.6. The absolute stereochemistry was determined to be (R) configuration by comparison with optical rotation of literature value^[4] ($[\alpha]^{25}_{D} = +85$, c = 0.2, H₂O) for the R configuration isomer.

Reference

- [1] S. Pieraccini, G. Gottarelli, R. Labruto, S. Masiero, O. Pandoli, G. P. Spada, *Chem. Eur. J.* **2004**, *10*, 5632.
- [2] C. -J. Wang, M. Shi, J. Org. Chem. 2003, 68, 6229.
- [3] T. Okino, Y. Hoashi, F. T, Furukawa, Y. Takemoto, J. Am. Chem. Soc. 2005, 127, 119.
- [4] H. M. L. Davies, P. Ren, Tetrahedron Lett. 2001, 42, 3149.