Synthesis of Highly Substituted Furans by the Electrophile-Induced Coupling of 2-(1-Alkynyl)-2-alken-1-ones and Nucleophiles

Tuanli Yao, Xiaoxia Zhang and Richard C. Larock* Department of Chemistry, Iowa State University, Ames, Iowa 50011 larock@iastate.edu

	Page
General	S2-S2
Preparation of 2-(1-Alkynyl)-2-alken-1-ones	S2-S7
AuCl ₃ -catalyzed cyclizations	S7-S13
iodine-induced cyclizations	S13-S26
PhSeCl-induced cyclizations	S26-S27
Elaboration of furan products	S27-S31
References	S31-S32
Copies of ¹ H and ¹³ C NMR spectra	S32-S116

General procedures. All ¹H and ¹³C NMR spectra were recorded at 300 and 75.5 MHz. Thin-layer chromatography was performed using commercially prepared 60-mesh silica gel plates (Whatman K6F), and visualization was effected with short wavelength UV light (254 nm) and a basic KMnO₄ solution [3 g of KMnO₄ + 20 g of K₂CO₃ + 5 mL of NaOH (5%) + 300 mL of H₂O]. All melting points are uncorrected. High resolution mass spectra were recorded on a Kratos MS50TC double focusing magnetic sector mass spectrometer using EI at 70 eV. Compounds 1, 2, 16, 17, 29, 30, 36, 38, 40, 47, 49, 54, 56, 60, 62, 63, 65, 66, 69 and 70 have been previously reported. ¹

2-(4-Methoxyphenyl)ethynyl-2-cyclohexen-1-one (8). This 2-(1-alkynyl)-2-alken-1-one was prepared from 2-iodo-2-cyclohexen-1-one² by following a procedure from the literature.³ 2-Iodo-2-cyclohexen-1-one (444 mg, 2.0 mmol), PdCl₂(PPh₃)₂ (70.2 mg, 0.05 equiv), (4-methoxyphenyl)ethyne (529 mg, 2.0 equiv) and CuI (38 mg, 0.1 equiv) were taken up in THF (14 mL) at 0 °C. Diisopropylamine (0.84 mL, 3.0 equiv) was added, and the resulting mixture was stirred at 0 °C for 45 min. The mixture was diluted with Et₂O (100 mL) and washed with 1M HCl (50 mL) and brine (20 mL). The organic layer was dried over MgSO₄, filtered and concentrated. The residue was purified by flash column chromatography (silica gel, 3:1 hexane/EtOAc) to afford 301 mg (67%) of the indicated compound **8** as light yellow solid: mp 70-71 °C; ¹H NMR (CDCl₃) δ 2.03-2.10 (m, 2H), 2.46-2.55 (m, 4H), 3.80 (s, 3H), 6.83 (dt, *J* = 8.4, 2.1 Hz, 2H), 7.32 (t, *J* = 4.5

Hz, 1H), 7.43 (dt, J = 9.0, 2.1 Hz, 2H); ¹³C NMR (CDCl₃) δ 22.7, 26.7, 38.4, 55.5, 82.7, 92.4, 114.1, 115.2, 125.7, 133.5, 153.8, 159.9, 196.0; IR (CH₂Cl₂) 2952, 1688, 1510, 1249 cm⁻¹; HRMS m/z 226.0996 (calcd for C₁₅H₁₄O₂, 226.0994).

Ethyl 4-[(6-oxocyclohexenyl)ethynyl]benzoate (11). This 2-(1-alkynyl)-2-alken-1-one was prepared from 2-iodo-2-cyclohexen-1-one² by following the same procedure as that used for compound **8**. 2-Iodo-2-cyclohexen-1-one (222 mg, 1.0 mmol), ethyl 4-ethynylbenzoate (348 mg, 2.0 equiv), PdCl₂(PPh₃)₂ (35.6 mg, 0.05 equiv), CuI (20 mg, 0.1 equiv) and diisopropylamine (0.42 mL, 3.0 equiv) afforded, after purification by flash column chromatography (silica gel, 3:1 hexane/EtOAc), 160 mg (60%) of the indicated compound **11** as a yellow solid: mp 116-117 °C; ¹H NMR (CDCl₃) δ 1.38 (t, J = 6.9 Hz, 3H), 2.05-2.10 (m, 2H), 2.48-2.57 (m, 4H), 4.36 (q, J = 6.9 Hz, 2H), 7.39 (t, J = 4.5 Hz, 1H), 7.54 (dt, J = 8.4, 1.8 Hz, 2H), 7.98 (dt, J = 8.7, 1.8 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.5, 22.6, 26.8, 38.3, 61.4, 86.8, 91.5, 125.3, 127.7, 129.6, 130.2, 131.9, 155.3, 166.3, 195.6; IR (CH₂Cl₂) 2981, 1714, 1682 cm⁻¹; HRMS m/z 268.1103 (calcd for C₁₇H₁₆O₃, 268.1099).

2-(4-Nitrophenyl)ethynyl-2-cyclohexen-1-one (**14**). This 2-(1-alkynyl)-2-alken-1-one was prepared from 2-iodo-2-cyclohexen-1-one² by following the same procedure as that used for compound **8**. 2-Iodo-2-cyclohexen-1-one (222 mg, 1.0 mmol), (4-nitrophenyl)ethyne (294 mg, 2.0 equiv), PdCl₂(PPh₃)₂ (35.6 mg, 0.05 equiv), CuI (20 mg, 0.1 equiv) and diisopropylamine (0.42 mL, 3.0 equiv) afforded, after purification by flash column chromatography (silica gel, 2:1 hexane/EtOAc), 168 mg (70%) of the indicated compound **14** as a yellow solid: mp 113-115 °C; ¹H NMR (CDCl₃) δ 2.06-2.11 (m, 2H), 2.51-2.58 (m, 4H), 4.36 (q, J = 6.9 Hz, 2H), 7.44 (t, J = 4.5 Hz, 1H), 7.62 (d, J = 9.0 Hz, 2H), 8.18 (d, J = 9.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 22.5, 26.9, 38.3, 89.3, 90.3, 123.8, 125.0, 130.1, 132.7, 147.3, 156.2, 195.4; IR (CH₂Cl₂) 3055, 2952, 1682, 1592 cm⁻¹; HRMS m/z 241.0743 (calcd for C₁₄H₁₁NO₃, 241.0739).

2-(Trimethylsilyl)ethynyl-2-cyclohexen-1-one (**19).** This 2-(1-alkynyl)-2-alken-1-one was prepared from 2-iodo-2-cyclohexen-1-one² by following the same procedure as that used for compound **8**. 2-Iodo-2-cyclohexen-1-one (222 mg, 1.0 mmol), (trimethylsilyl)ethyne (196 mg, 2.0 equiv), PdCl₂(PPh₃)₂ (35.6 mg, 0.05 equiv), CuI (20 mg, 0.1 equiv) and diisopropylamine (0.42 mL, 3.0 equiv) afforded, after purification by flash column chromatography (silica gel, 5:1 hexane/EtOAc), 159 mg (83%) of the indicated compound **19** as a white solid: mp 100-101 °C; ¹H NMR (CDCl₃) δ 0.20 (t, J = 3.5 Hz, 9H), 1.98-2.03 (m, 2H), 2.40-2.49 (m, 4H), 7.32 (t, J = 4.4 Hz, 1H); ¹³C NMR

(CDCl₃) δ 0.0, 22.4, 26.5, 38.1, 97.6, 99.3, 125.4, 155.5, 195.5; IR (CH₂Cl₂) 3042, 2960, 1682, 1349 cm⁻¹; HRMS *m/z* 192.0974 (calcd for C₁₁H₁₆OSi, 192.0970).

2-Phenylethynyl-2-cyclopenten-1-one (**41**). This 2-(1-alkynyl)-2-alken-1-one was prepared from 2-iodo-2-cyclopenten-1-one ² by following the same procedure as that used for compound **8**. 2-Iodo-2-cyclopenten-1-one (208 mg, 1.0 mmol), phenylacetylene (204 mg, 2.0 equiv), PdCl₂(PPh₃)₂ (35.6 mg, 0.05 equiv), CuI (20 mg, 0.1 equiv) and diisopropylamine (0.42 mL, 3.0 equiv) afforded, after purification by flash column chromatography (silica gel, 3:1 hexane/EtOAc), 182 mg (100%) of the indicated compound **41** as a brown solid: mp 65-66 °C; ¹H NMR (CDCl₃) δ 2.49-2.53 (m, 2H), 2.74-2.78 (m, 2H), 7.31-7.33 (m, 3H), 7.49-7.53 (m, 2H), 7.84 (t, J = 3.2 Hz, 1H); ¹³C NMR (CDCl₃) δ 27.7, 34.3, 80.1, 96.0, 122.7, 128.5, 129.0, 130.3, 132.1, 165.4, 205.9; IR (CH₂Cl₂) 3061, 2923, 1716, 1488 cm⁻¹; HRMS m/z 182.0734 (calcd for C₁₃H₁₀O, 182.0732).

2-Phenylethynyl-2-cyclohepten-1-one (44). This 2-(1-alkynyl)-2-alken-1-one was prepared from 2-iodo-2-cyclohepten-1-one⁴ by following the same procedure as that used for compound **8**. 2-Iodo-2-cyclohepten-1-one (236 mg, 1.0 mmol), phenylacetylene (204

mg, 2.0 equiv), PdCl₂(PPh₃)₂ (35.6 mg, 0.05 equiv), CuI (20 mg, 0.1 equiv) and diisopropylamine (0.42 mL, 3.0 equiv) afforded, after purification by flash column chromatography (silica gel, 5:1 hexane/EtOAc), 90 mg (43%) of the indicated compound 44 as a yellow oil: 1 H NMR (CDCl₃) δ 1.77-1.86 (m, 4H), 2.47-2.54 (m, 2H), 2.68 (t, J = 6.5 Hz, 2H), 7.14 (t, J = 6.3 Hz, 1H), 7.25-7.31 (m, 3H), 7.44-7.48 (m, 2H); 13 C NMR (CDCl₃) δ 21.7, 25.2, 28.7, 42.6, 86.6, 90.4, 123.3, 128.4, 128.5, 128.9, 131.9, 151.2, 201.2; IR (CH₂Cl₂) 3055, 2940, 1679, 1421 cm⁻¹; HRMS m/z 210.1047 (calcd for $C_{15}H_{14}O$, 210.1045).

2-Phenyl-3-phenylethynyl-4*H***-benzopyran-4-one** (**51**). This 2-(1-alkynyl)-2-alken-1-one was prepared from 3-iodo-2-phenyl-4*H*-benzopyran-4-one ⁵ by the following procedure. To a solution of 3-iodo-2-phenyl-4*H*-benzopyran-4-one (696 mg, 2.0 mmol) and phenylacetylene (245 mg, 1.2 equiv) in Et₃N (20 mL) and DMF (1 mL) were added PdCl₂(PPh₃)₂ (14 mg, 1 mol %) and CuI (2.0 mg, 0.5 mol %). The resulting mixture was stirred at room temperature overnight. The mixture was diluted with CHCl₃ (100 mL) and washed with H₂O (30 mL). The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 4:1 hexane/EtOAc) to afford 516 mg (80%) of the indicated compound **51** as a light yellow solid: mp 155-157 °C; ¹H NMR (CDCl₃) δ 7.31-7.35 (m, 3H), 7.42-7.59 (m, 7H), 7.68-7.74 (m, 1H), 8.23-8.32 (m, 3H); IR (CH₂Cl₂) 3071, 1644, 1614, 1463 cm⁻¹; HRMS *m/z* 322.0997 (calcd for C₂₃H₁₄O₂, 322.0994).

(*E*)-2-Benzylidene-1,4-diphenylbut-3-yn-1-one (57). This 2-(1-alkynyl)-2-alken-1one was prepared from (E)-2-benzylidene-4-phenylbut-3-ynal⁶ by following a procedure from the literature. To a solution of (E)-2-benzylidene-4-phenylbut-3-ynal (531 mg, 2.3 mmol) in dry THF (5 mL) cooled to -78 °C was added PhMgBr (1 M in THF, 3.5 mL, 3.5 mmol). The reaction was stirred at the same temperature for 30 min and quenched with satd aq NH₄Cl (3 mL). The resulting mixture was extracted with Et₂O (20 mL). The organic layer was washed with brine (20 mL), dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure. The residue was dissolved in dry THF (30 mL). To this solution was added MnO₂ (4.0 g, 20 equiv), followed by stirring at room temperature for 12 h. The reaction mixture was filtered through a short pad of Celite, which was rinsed with EtOAc. The combined organic layer was concentrated under reduced pressure, and the residue was purified by flash column chromatography (silica gel, 7:1 hexane/EtOAc) to afford 470 mg (66%) of the indicated compound 57 as a light yellow oil: ¹H NMR (CDCl₃) δ 7.33-7.38 (m, 3H), 7.41-7.53 (m, 7H), 7.57-7.63 (m, 1H), 7.67 (s, 1H), 8.02-8.06 (m, 2H), 8.13-8.17 (m, 2H); 13 C NMR (CDCl₃) δ 87.5, 101.2, 121.2, 123.1, 128.4, 128.7, 128.9, 129.1, 130.0, 130.7, 130.9, 131.6, 132.8, 135.1, 137.4, 145.4, 193.6; IR (CH₂Cl₂) 3059, 1663, 1597, 1564, 1490, 1446, 1318, 1264 cm⁻¹; HRMS m/z 308.1209 (calcd for $C_{23}H_{16}O$, 308.1201).

Representative procedure for the AuCl₃-catalyzed cyclizations. A solution of AuCl₃ (30.3 mg) in MeCN (970 mg) was prepared. To the appropriate 2-(1-alkynyl)-2-alken-1-one (0.2 mmol) and nucleophile (1.5 equiv) in CH₂Cl₂ (1.0 mL), was added a portion of the above AuCl₃ solution (20 mg, 1 mol %). The mixture was stirred at room temperature for 1 h unless otherwise specified. The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel.

4-Methoxy-2-(4-methoxyphenyl)-4,5,6,7-tetrahydrobenzofuran (9). Compound **8** (45.2 mg, 0.2 mmol) was allowed to react with methanol (9.6 mg, 1.5 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 7:1 hexane/EtOAc) to afford 45.5 mg (88%) of the indicated compound **9** as a colorless oil: 1 H NMR (CDCl₃) δ 1.74-1.88 (m, 2H), 1.91-2.11 (m, 2H), 2.53-2.64 (m, 1H), 2.67-2.77 (m, 1H), 3.45 (s, 3H), 3.82 (s, 3H), 4.29 (t, J = 3.9 Hz, 1H), 6.51 (s, 1H), 6.90 (dt, J = 9.0, 3.0 Hz, 2H), 7.56 (dt, J = 9.0, 3.0 Hz, 2H); 13 C NMR (CDCl₃) δ 19.2, 23.5, 28.7, 55.5, 56.4, 72.7, 104.0, 114.3, 120.0, 124.5, 125.1, 152.3, 152.5, 159.0; IR (CH₂Cl₂) 2943, 1613, 1503, 1463, 1411 cm $^{-1}$; HRMS m/z 258.1260 (calcd for C₁₆H₁₈O₃, 258.1256).

Ethyl 4-(4-methoxy-4,5,6,7-tetrahydro-1-benzofuran-2-yl)benzoate (12).

Compound **11** (53.6 mg, 0.2 mmol) was allowed to react with methanol (9.6 mg, 1.5 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 3:1 hexane/EtOAc) to afford 54.7 mg (91%) of the indicated compound **12** as a light yellow oil: 1 H NMR (CDCl₃) δ 1.39 (t, J = 7.4 Hz, 3H), 1.75-1.88 (m, 2H), 1.91-2.11 (m, 2H), 2.54-2.66 (m, 1H), 2.68-2.78 (m, 1H), 3.44 (s, 3H), 4.29 (t, J = 3.9 Hz, 1H), 4.37 (q, J = 6.9 Hz, 2H), 6.78 (s, 1H), 7.66 (dd, J = 6.9, 1.8 Hz, 2H), 8.03 (dd, J = 6.9, 1.8 Hz, 2H); 13 C NMR (CDCl₃) δ 14.6, 19.0, 23.5, 28.5, 56.4, 61.1, 72.5, 107.8, 120.7, 123.1, 128.6, 130.3, 135.2, 151.5, 154.4, 166.6; IR (CH₂Cl₂) 2942, 1713, 1607, 1574, 1423 cm⁻¹; HRMS m/z 300.1365 (calcd for C₁₈H₂₀O₄, 300.1362).

4-Methoxy-2-(4-nitrophenyl)-4,5,6,7-tetrahydrobenzofuran (15). Compound **14** (48.3 mg, 0.2 mmol) was allowed to react with methanol (9.6 mg, 1.5 equiv) under our

standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 3:1 hexane/EtOAc) to afford 54.3 mg (99%) of the indicated compound **15** as a yellow oil: 1 H NMR (CDCl₃) δ 1.76-1.89 (m, 2H), 1.91-2.11 (m, 2H), 2.54-2.67 (m, 1H), 2.69-2.79 (m, 1H), 3.44 (s, 3H), 4.30 (t, J = 3.6 Hz, 1H), 6.87 (s, 1H), 7.70 (dt, J = 9.0, 2.4 Hz, 2H), 8.19 (dt, J = 9.3, 2.1 Hz, 2H); 13 C NMR (CDCl₃) δ 18.9, 23.5, 28.3, 56.5, 72.4, 109.7, 121.4, 123.6, 124.5, 136.9, 146.2, 150.3, 155.7; IR (CH₂Cl₂) 2943, 1595, 1514, 1453 cm⁻¹; HRMS m/z 273.1004 (calcd for C₁₅H₁₅NO₄, 273.1001).

4-Isopropoxy-2-phenyl-4,5,6,7-tetrahydrobenzofuran (**23**). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with isopropanol (18 mg, 1.5 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 9:1 hexane/EtOAc) to afford 36.1 mg (71%) of the indicated compound **23** as a colorless oil: ¹H NMR (CDCl₃) δ 1.22-1.26 (m, 6H), 1.77-1.88 (m, 3H), 2.00-2.13 (m, 1H), 2.53-2.64 (m, 1H), 2.68-2.75 (m, 1H), 3.77-3.89 (m, 1H), 4.46 (t, *J* = 3.8 Hz, 1H), 6.60 (s, 1H), 7.18-7.24 (m, 1H), 7.32-7.38 (m, 2H), 7.61-7.65 (m, 2H); ¹³C NMR (CDCl₃) δ 19.3, 22.9, 23.4, 23.5, 30.0, 68.7, 69.6, 105.3, 121.2, 123.7, 127.0, 128.8, 131.5, 152.5, 152.9; IR (CH₂Cl₂) 2968, 1604, 1487, 1449, 1122, 1066 cm⁻¹; HRMS *m/z* 256.1467 (calcd for C₁₇H₂₀O₂, 256.1463).

4-Allyloxy-2-phenyl-4,5,6,7-tetrahydrobenzofuran (**25**). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with allyl alcohol (17.4 mg, 1.5 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (Al₂O₃, 70:1 hexane/EtOAc) to afford 37.8 mg (75%) of the indicated compound **25** as a colorless oil: 1 H NMR (CDCl₃) δ 1.78-1.88 (m, 2H), 1.92-2.17 (m, 2H), 2.55-2.66 (m, 1H), 2.70-2.79 (m, 1H), 4.12-4.15 (m, 2H), 4.46 (t, J = 3.8 Hz, 1H), 5.22 (dd, J = 10.4, 1.4 Hz, 1H), 5.31-5.39 (m, 1H), 5.93-6.07 (m, 1H), 6.65 (s, 1H), 7.20-7.26 (m, 1H), 7.33-7.39 (m, 2H), 7.62-7.66 (m, 2H); 13 C NMR (CDCl₃) δ 19.2, 23.5, 29.2, 69.7, 70.7, 105.5, 116.9, 120.4, 123.7, 127.1, 128.8, 131.4, 135.7, 152.5, 153.2; IR (CH₂Cl₂) 3079, 2943, 1633, 1553, 1449 cm⁻¹; HRMS m/z 254.1311 (calcd for C₁₇H₁₈O₂, 254.1307).

4-[(2-Iodobenzyl)oxy]-2-phenyl-4,5,6,7-tetrahydrobenzofuran (27). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with 2-iodobenzyl alcohol (70.2 mg, 1.5 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (Al₂O₃, 90:1 hexane/EtOAc) to afford 75.1 mg (87%) of the indicated compound **27** as a light yellow oil: ¹H NMR (CDCl₃) δ 1.82-1.95 (m, 2H), 2.04-2.22 (m,

2H), 2.58-2.69 (m, 1H), 2.73-2.80 (m, 1H), 4.59 (t, J = 4.2 Hz, 1H), 4.64 (d, J = 3.9 Hz, 2H), 6.71 (s, 1H), 6.98 (dt, J = 7.8, 1.7 Hz, 1H), 7.20-7.25 (m, 1H), 7.34-7.39 (m, 3H), 7.52 (dd, J = 7.5, 1.5 Hz, 1H), 7.63-7.67 (m, 2H), 7.84 (dd, J = 7.8, 1.2 Hz, 1H); ¹³C NMR (CDCl₃) δ 19.3, 23.5, 29.1, 71.4, 74.6, 98.3, 105.6, 120.2, 123.7, 127.2, 128.5, 128.8, 129.3, 129.4, 131.4, 139.4, 141.3, 152.6, 153.3; IR (CH₂Cl₂) 3059, 2942, 1604, 1553, 1486 cm⁻¹; HRMS m/z 430.0437 (calcd for C₂₁H₁₉IO₂, 430.0430).

46

4-Methoxy-2-phenyl-5,6,7,8-tetrahydro-4*H***-cyclohepta**[*b*]**furan** (**46**). Compound **44** (42 mg, 0.2 mmol) was allowed to react with methanol (9.6 mg, 1.5 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 9:1 hexane/EtOAc) to afford 39.7 mg (82%) of the indicated compound **9** as a light yellow oil: 1 H NMR (CDCl₃) δ 1.70-1.90 (m, 4H), 1.99-2.14 (m, 2H), 2.84-2.90 (m, 2H), 3.37 (s, 3H), 4.20 (dd, J = 6.3, 2.4 Hz, 1H), 6.59 (s, 1H), 7.17-7.24 (m, 1H), 7.32-7.38 (m, 2H), 7.59-7.63 (m, 2H); 13 C NMR (CDCl₃) δ 24.4, 26.6, 28.9, 33.3, 56.6, 75.6, 108.4, 123.48, 123.54, 126.9, 128.8, 131.3, 150.3, 154.0; IR (CH₂Cl₂) 2927, 2845, 1602, 1552, 1486, 1447, 1084 cm⁻¹; HRMS m/z 242.1310 (calcd for C₁₆H₁₈O₂, 242.1307).

3-[Methoxy(phenyl)methyl]-2,5-diphenylfuran (59). Compound **57** (61.6 mg, 0.2 mmol) was allowed to react with methanol (9.6 mg, 1.5 equiv) under our standard reaction conditions for 4 h (2 mol % of AuCl₃ was used). The reaction mixture was chromatographed (silica gel, 12:1 hexane/EtOAc) to afford 60.4 mg (89%) of the indicated compound **59** as a colorless oil: ¹H NMR (CDCl₃) δ 3.44 (s, 3H), 5.57 (s, 1H), 6.75 (s, 1H), 7.25-7.54 (m, 11H), 7.72-7.76 (m, 4H); ¹³C NMR (CDCl₃) δ 57.0, 77.9, 107.3, 124.1, 124.2, 126.8, 127.4, 127.8, 128.1, 128.8, 128.9, 129.0, 130.8, 131.1, 141.1, 150.5, 153.1 (one sp² carbon missing due to overlap); IR (CH₂Cl₂) 3060, 2933, 1594, 1493, 1086 cm⁻¹; HRMS *m/z* 340.1469 (calcd for C₂₄H₂₀O₂, 340.1463).

Representative procedure for the iodine-induced cyclizations. To the mixture of appropriate 2-(1-alkynyl)-2-alken-1-one (0.2 mmol), I₂ (3.0 equiv) and NaHCO₃ (3.0 equiv), was added a solution of nucleophile (8.0 equiv) in CH₃CN (2.0 mL). The resulting mixture was stirred at room temperature for 1 h unless otherwise specified. The mixture was diluted with ether (25 mL), washed with satd Na₂S₂O₃ (15 mL) and dried (MgSO₄). The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel.

3

3-Iodo-4-methoxy-2-phenyl-4,5,6,7-tetrahydrobenzofuran (3). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with methanol (51.2 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 10:1 hexane/EtOAc) to afford 56.8 mg (80%) of the indicated compound **3** as a

colorless oil: 1 H NMR (CDCl₃) δ 1.52-1.65 (m, 1H), 1.83-2.10 (m, 2H), 2.14-2.23 (m, 1H), 2.51-2.63 (m, 1H), 2.69-2.79 (m, 1H), 3.52 (s, 3H), 4.13 (t, J = 2.9 Hz, 1H), 7.27-7.34 (m, 1H), 7.37-7.44 (m, 2H), 7.90-7.98 (m, 2H); 13 C NMR (CDCl₃) δ 18.5, 23.5, 27.1, 57.3, 65.3, 72.2, 123.7, 126.4, 128.1, 128.5, 130.8, 150.4, 154.1; IR (CH₂Cl₂) 2938, 2817, 1628, 1483, 1414, 1083 cm ${}^{-1}$; HRMS m/z 354.0121 (calcd for C₁₅H₁₅IO₂, 354.0117).

3,4-Diiodo-2-phenyl-4,5,6,7-tetrahydrobenzofuran (**7**). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react under our standard reaction conditions, in the absence of any nucleophile for 1 h. The reaction mixture was chromatographed (silica gel, 40:1 hexane/EtOAc) to afford 55.0 mg (41%) of the indicated compound **7** as a white solid: mp 160-162 °C; ¹H NMR (CDCl₃) δ 1.49-1.60 (m, 1H), 1.86-2.00 (m, 1H), 2.38-2.66 (m, 2H), 2.73-2.84 (m, 2H), 4.56 (s, 1H), 7.26-7.33 (m, 1H), 7.37-7.43 (m, 2H), 7.86-7.90 (m, 2H); ¹³C NMR (CDCl₃) δ 19.1, 23.5, 27.3, 65.3, 67.9, 123.0, 126.7, 128.1, 128.5, 130.9, 150.4, 155.1; IR (CH₂Cl₂) 3060, 2984, 2941, 1620, 1603, 1483 cm⁻¹.

10

3-Iodo-4-methoxy-2-(4-methoxyphenyl)-4,5,6,7-tetrahydrobenzofuran (10).

Compound **8** (45.2 mg, 0.2 mmol) was allowed to react with methanol (51.2 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 6:1 hexane/EtOAc) to afford 63.9 mg (83%) of the indicated compound **10** as a colorless oil: 1 H NMR (CDCl₃) δ 1.58 (tt, J = 3.5, 13.6 Hz, 1H), 1.81-1.92 (m, 1H), 1.94-2.10 (m, 1H), 2.12-2.21 (m, 1H), 2.50-2.61 (m, 1H), 2.67-2.76 (m, 1H), 3.51 (s, 3H), 3.83 (s, 3H), 4.11 (t, J = 3.0 Hz, 1H), 6.94 (dt, J = 9.0, 2.7 Hz, 2H), 7.85 (dt, J = 9.0, 2.7 Hz, 2H); 13 C NMR (CDCl₃) δ 18.5, 23.5, 27.1, 55.5, 57.3, 63.8, 72.3, 114.0, 123.4, 123.6, 128.0, 150.6, 153.5, 159.5; IR (CH₂Cl₂) 2939, 2835, 1612, 1495 cm⁻¹; HRMS m/z 384.0229 (calcd for C₁₆H₁₇IO₃, 384.0223).

13

Ethyl 4-(3-iodo-4-methoxy-4,5,6,7-tetrahydrobenzofuran-2-yl)benzoate (13).

Compound **11** (53.6 mg, 0.2 mmol) was allowed to react with methanol (51.2 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 5:1 hexane/EtOAc) to afford 70.7 mg (83%) of the indicated compound **13** as a colorless oil: 1 H NMR (CDCl₃) δ 1.40 (t, J = 7.2 Hz, 3H), 1.62 (tt, J = 3.3, 13.8 Hz, 1H), 1.88-2.10 (m, 2H), 2.14-2.22 (m, 1H), 2.50-2.62 (m, 1H), 2.68-2.79 (m, 1H), 3.51 (s, 3H), 4.12 (t, J = 3.0 Hz, 1H), 4.38 (q, J = 7.2 Hz, 3H), 8.02-8.09 (m, 4H); 13 C NMR (CDCl₃) δ 14.6, 18.4, 23.5, 26.9, 57.3, 61.2, 67.6, 72.1, 124.4, 125,7,

129.4, 129.9, 134.7, 149.2, 155.1, 166.5; IR (CH₂Cl₂) 2932, 2817, 1713, 1607, 1276 cm⁻¹; HRMS m/z 426.0336 (calcd for C₁₈H₁₉IO₄, 426.0328).

18

2-(Cyclohex-1-enyl)-3-iodo-4-methoxy-4,5,6,7-tetrahydrobenzofuran (18).

Compound **16** (40.0 mg, 0.2 mmol) was allowed to react with methanol (51.2 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 11:1 hexane/EtOAc) to afford 33.0 mg (46%) of the indicated compound **18** as a colorless oil: 1 H NMR (CDCl₃) δ 1.43-1.75 (m, 5H), 1.77-1.85 (m, 1H), 1.92-2.06 (m, 1H), 2.08-2.22 (m, 3H), 2.40-2.52 (m, 3H), 2.58-2.66 (m, 1H), 3.47 (s, 3H), 4.04 (s, 1H), 6.42-6.46 (m, 1H); 13 C NMR (CDCl₃) δ 18.5, 22.1, 22.8, 23.4, 25.6, 26.7, 27.1, 57.2, 63.0, 72.3, 122.8, 127.9, 128.2, 152.4, 152.5; IR (CH₂Cl₂) 2928, 2858, 1629, 1435, 1346 cm⁻¹; HRMS m/z 358.0435 (calcd for C₁₅H₁₉IO₂, 358.0430).

21

2,3-Diiodo-4-methoxy-4,5,6,7-tetrahydrobenzofuran (**21**). Compound **19** (38.4 mg, 0.2 mmol) was allowed to react with methanol (51.2 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 9:1

hexane/EtOAc) to afford 47.2 mg (60%) of the indicated compound **21** as a colorless oil: 1 H NMR (CDCl₃) δ 1.47-1.60 (m, 1H), 1.72-1.84 (m, 1H), 1.89-2.13 (m, 2H), 2.48-2.59 (m, 1H), 2.64-2.73 (m, 1H), 3.46 (s, 3H), 4.04 (t, J = 3.0 Hz, 1H); 13 C NMR (CDCl₃) δ 18.3, 23.7, 27.2, 57.4, 72.0, 83.1, 96.4, 124.2, 159.8; IR (CH₂Cl₂) 2940, 2817, 1625, 1452, 1410 cm⁻¹; HRMS m/z 403.8777 (calcd for C₉H₁₀I₂O₂, 403.8770).

3-Iodo-4-isopropoxy-2-phenyl-4,5,6,7-tetrahydrobenzofuran (22). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with isopropanol (96 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 12:1 hexane/EtOAc) to afford 55.5 mg (73%) of the indicated compound **22** as a light yellow oil: 1 H NMR (CDCl₃) δ 1.25 (d, J = 6.3 Hz, 3H), 1.36 (d, J = 6.0 Hz, 3H), 1.53-1.63 (m, 1H), 1.82-1.93 (m, 1H), 2.02-2.17 (m, 2H), 2.50-2.62 (m, 1H), 2.69-2.78 (m, 1H), 3.87-3.97 (m, 1H), 4.35 (s, 3H), 7.26-7.33 (m, 1H), 7.37-7.43 (m, 2H), 7.90-7.94 (m, 2H); 13 C NMR (CDCl₃) δ 18.3, 23.2, 23.6, 24.2, 28.6, 65.3, 68.7, 70.5, 123.7, 126.6, 128.0, 128.5, 130.9, 150.3, 154.2; IR (CH₂Cl₂) 3058, 2967, 2882, 1625, 1483, 1445 cm⁻¹; HRMS m/z 382.0437 (calcd for C₁₇H₁₉IO₂, 382.0430).

4-Allyoxy-3-iodo-2-phenyl-4,5,6,7-tetrahydrobenzofuran (**24**). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with allyl alcohol (139 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (Al₂O₃, 100:1 hexane/EtOAc) to afford 43.3 mg (57%) of the indicated compound **24** as a light yellow oil: 1 H NMR (CDCl₃) δ 1.61 (tt, J = 13.5, 3.2 Hz, 1H), 1.83-1.93 (m, 1H), 1.99-2.21 (m, 2H), 2.51-2.63 (m, 1H), 2.70-2.79 (m, 1H), 4.15-4.26 (m, 2H), 4.29-4.32 (m, 1H), 5.20 (dd, J = 10.4, 1.2 Hz, 1H), 5.35 (dd, J = 17.4, 1.4 Hz, 1H), 6.01-6.13 (m, 1H), 7.28-7.33 (m, 1H), 7.38-7.44 (m, 2H), 7.91-7.96 (m, 2H); 13 C NMR (CDCl₃) δ 18.5, 23.5, 27.8, 65.3, 70.7, 70.9, 117.2, 123.7, 126.5, 128.0, 128.5, 130.8, 135.6, 150.3, 154.2; IR (CH₂Cl₂) 3079, 2940, 2860, 1627, 1603, 1483 cm⁻¹; HRMS m/z 380.0278 (calcd for C₁₇H₁₇IO₂, 380.0273).

4-Benzyloxy-3-iodo-2-phenyl-4,5,6,7-tetrahydrobenzofuran (26). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with benzyl alcohol (173 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (Al₂O₃, 100:1 hexane/EtOAc) to afford 51.5 mg (60%) of the indicated compound **26** as a light yellow oil: 1 H NMR (CDCl₃) δ 1.65 (tt, J = 13.5, 3.3 Hz, 1H), 1.85-1.97 (m, 1H), 2.05-2.20 (m, 1H), 2.21-2.29 (m, 1H), 2.53-2.65 (m, 1H), 2.71-2.80 (m, 1H), 4.43 (t, J = 2.9 Hz, 1H), 4.73 (s, 1H), 7.25-7.50 (m, 8H), 7.93-7.97 (m, 2H); 13 C NMR (CDCl₃) δ 18.6, 23.5, 27.7, 65.4, 71.1, 72.1, 123.8, 126.5, 127.9, 128.1, 128.5, 128.56, 128.58,

130.8, 138.8, 150.3, 154.3; IR (CH₂Cl₂) 3062, 3029, 2940, 1628, 1603, 1484 cm⁻¹; HRMS m/z 419.9653 (calcd for C₂₁H₁₉IO₂, 419.9647).

3-Iodo-2-phenyl-4-(3-phenyl-2-propynyl)oxy-4,5,6,7-tetrahydrobenzofuran (28).

Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with 3-phenyl-2-propyn-1-ol (211 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 18:1 hexane/EtOAc) to afford 70.0 mg (77%) of the indicated compound **28** as a colorless oil: 1 H NMR (CDCl₃) δ 1.67 (tt, J = 13.8, 3.3 Hz, 1H), 1.86-1.97 (m, 1H), 2.05-2.20 (m, 1H), 2.28-2.37 (m, 1H), 2.53-2.66 (m, 1H), 2.72-2.82 (m, 1H), 4.56 (t, J = 3.2 Hz, 1H), 4.61 (d, J = 5.7 Hz, 2H), 7.29-7.36 (m, 4H), 7.38-7.45 (m, 2H), 7.47-7.52 (m, 2H), 7.93-7.98 (m, 2H); 13 C NMR (CDCl₃) δ 18.5, 23.5, 27.8, 57.7, 65.1, 70.3, 86.3, 86.4, 123.2, 123.5, 126.5, 128.1, 128.55, 128.58, 128.60, 130.8, 132.0, 150.5, 154.6; IR (CH₂Cl₂) 3057, 2940, 1660, 1626, 1487 cm⁻¹; HRMS m/z 454.0437 (calcd for C₂₃H₁₉IO₂, 454.0430).

3-Iodo-2-phenyl-4,5,6,7-tetrahydrobenzofuran-4-ol (31). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with H₂O (28.8 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 4:1

hexane/EtOAc) to afford 52.1 mg (77%) of the indicated compound **31** as a white solid: mp 83-84 °C; 1 H NMR (CDCl₃) δ 1.75-1.96 (m, 3H), 1.99-2.14 (m, 2H), 2.53-2.65 (m, 1H), 2.70-2.79 (m, 1H), 4.70 (q, J = 3.9 Hz, 1H), 7.29-7.35 (m, 1H), 7.38-7.45 (m, 2H), 7.92-7.97 (m, 2H); 13 C NMR (CDCl₃) δ 18.6, 23.5, 31.8, 63.7, 64.1, 125.0, 126.3, 128.2, 128.6, 130.6, 150.3, 153.8; IR (CH₂Cl₂) 3340, 2940, 1624, 1483, 1442, 1223 cm⁻¹; HRMS m/z 339.9970 (calcd for C₁₄H₁₃IO₂, 339.9960).

3-Iodo-2-phenyl-4,5,6,7-tetrahydrobenzofuran-4-yl acetate (33). Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with acetic acid (144 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 6:1 hexane/EtOAc) to afford 50.3 mg (66%) of the indicated compound **33** as a light yellow solid: mp 115-116 °C; ¹H NMR (CDCl₃) δ 1.82-1.97 (m, 3H), 2.00-2.14 (m, 4H), 2.57-2.65 (m, 1H), 2.76-2.87 (m, 1H), 5.79 (t, J = 3.0 Hz, 1H), 7.29-7.35 (m, 1H), 7.38-7.45 (m, 2H), 7.92-7.96 (m, 2H); ¹³C NMR (CDCl₃) δ 19.1, 21.5, 23.3, 29.3, 63.9, 66.3, 121.6, 126.4, 128.3, 128.6, 130.5, 150.7, 155.3, 170.8; IR (CH₂Cl₂) 2951, 1731, 1628, 1483, 1370 cm⁻¹; HRMS m/z 382.0071 (calcd for C₁₆H₁₅IO₃, 382.0066).

3-Iodo-4-methoxy-2-phenyl-5,6-dihydro-4*H***-cyclopentafuran** (**42**). Compound **41** (36.4 mg, 0.2 mmol) was allowed to react with MeOH (51.2 mg, 8.0 equiv) under our standard reaction conditions for 4 h. The reaction mixture was chromatographed (silica gel, 6:1 hexane/EtOAc) to afford 50.3 mg (74%) of the indicated compound **42** as a light yellow solid: mp 70-71 °C; ¹H NMR (CDCl₃) δ 2.36-2.45 (m, 1H), 2.64-2.78 (m, 2H), 2.98-3.06 (m, 1H), 3.47 (s, 3H), 4.65-4.69 (m, 1H), 7.29-7.35 (m, 1H), 7.39-7.45 (m, 2H), 7.92-7.96 (m, 2H); ¹³C NMR (CDCl₃) δ 24.2, 35.2, 56.6, 60.0, 77.7, 126.5, 128.2, 128.6, 131.1, 133.2, 155.7, 162.3; IR (CH₂Cl₂) 2974, 2931, 2819, 1619, 1601, 1479 cm⁻¹; HRMS *m*/*z* 399.9968 (calcd for C₁₄H₁₃IO₂, 399.9960).

45

3-Iodo-4-methoxy-2-phenyl-5,6,7,8-tetrahydro-4*H*-cycloheptafuran (45).

Compound **44** (42.0 mg, 0.2 mmol) was allowed to react with MeOH (51.2 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 9:1 hexane/EtOAc) to afford 56.0 mg (76%) of the indicated compound **45** as a light yellow oil: 1 H NMR (CDCl₃) δ 1.50-1.68 (m, 2H), 1.78-1.87 (m, 1H), 1.96-2.11 (m, 2H), 2.35-2.42 (m, 1H), 2.87-2.94 (m, 2H), 3.40 (s, 3H), 4.28 (dd, J = 1.8, 5.1 Hz, 1H), 7.25-7.34 (m, 1H), 7.38-7.44 (m, 2H), 7.91-7.96 (m, 2H); 13 C NMR (CDCl₃) δ 23.2, 26.4, 28.8, 31.8, 56.6, 70.1, 74.5, 125.0, 126.4, 128.0, 128.5, 130.8,

149.0, 155.3; IR (CH₂Cl₂) 3055, 2926, 1602, 1485, 1445 cm⁻¹; HRMS m/z 368.0279 (calcd for C₁₆H₁₇IO₂, 368.0273).

3-Iodo-4-methoxy-2-phenyl-4*H***-furo**[3,2-c]**chromene** (**48**). Compound **47** (49.2 mg, 0.2 mmol) was allowed to react with MeOH (12.8 mg, 2.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 4:1 hexane/EtOAc) to afford 70.1 mg (87%) of the indicated compound **48** as a white solid: mp 74-75 °C; ¹H NMR (CDCl₃) δ 3.64 (s, 3H), 6.10 (s, 1H), 7.06-7.14 (m, 2H), 7.23-7.29 (m, 1H), 7.36-7.42 (m, 1H), 7.44-7.51 (m, 2H), 7.63 (dd, J = 7.5, 1.4 Hz, 1H), 8.03-8.08 (m, 2H); ¹³C NMR (CDCl₃) δ 55.8, 61.2, 98.9, 114.6, 117.4, 119.4, 120.2, 122.3, 126.7, 128.77, 128.81, 129.5, 130.1, 147.6, 151.6, 152.0; IR (CH₂Cl₂) 3059, 2927, 2828, 1642, 1497 cm⁻¹; HRMS m/z 403.9918 (calcd for C₁₈H₁₃IO₃, 403.9910).

4-[4-(Dimethylamino)phenyl]-3-iodo-2-phenyl-4*H*-furo[3,2-*c*]chromene (50).

Compound **47** (49.2 mg, 0.2 mmol) was allowed to react with *N*,*N*-dimethylaniline (36.2 mg, 1.5 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 8:1 hexane/EtOAc) to afford 78.4 mg (80%) of the indicated

compound **50** as a white solid: mp 157-158 °C; ¹H NMR (CDCl₃) δ 2.94 (s, 6H), 6.31 (s, 1H), 6.67 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.1 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.6 Hz, 1H), 7.27 (d, J = 8.4 Hz, 2H), 7.34-7.39 (m, 1H), 7.43-7.55 (m, 3H), 8.09 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃) δ 40.6, 62.7, 79.1, 112.3, 115.6, 117.2, 119.8, 121.4, 121.7, 126.5, 127.0, 128.5, 128.7, 129.35, 129.43, 130.3, 146.3, 151.1, 151.6, 152.7 (one sp² carbon missing due to overlap; IR (CH₂Cl₂) 2962, 2918, 1612, 1522 cm⁻¹; HRMS m/z 493.0544 (calcd for C₂₅H₂₀INO₂, 493.0539).

3-Iodo-4-methoxy-2,4-diphenyl-4*H***-furo**[**3,2-***c*]**chromene** (**52**). Compound **51** (64.4 mg, 0.2 mmol) was allowed to react with MeOH (32.0 mg, 5 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 3:1 hexane/EtOAc) to afford 58.7 mg (61%) of the indicated compound **52** as a yellow oil: 1 H NMR (CDCl₃) δ 3.39 (s, 3H), 7.02-7.09 (m, 2H), 7.23-7.28 (m, 1H), 7.36-7.51 (m, 6H), 7.61-7.70 (m, 3H), 8.11 (d, J = 7.5 Hz, 2H); 13 C NMR (CDCl₃) δ 51.6, 61.7, 105.5, 112.7, 116.1, 117.2, 120.1, 121.5, 127.0, 127.1, 128.2, 128.7, 129.0, 129.05, 129.9, 130.1, 141.4, 148.7, 152.5, 153.1; IR (CH₂Cl₂) 3061, 3031, 2934, 1636, 1491, 1448 cm⁻¹; HRMS m/z 480.0229 (calcd for C₂₄H₁₇IO₃, 480.0223).

3-Iodo-4-[methoxy(phenyl)methyl]-5-methyl-2-phenylfuran (**55**). Compound **54** (49.2 mg, 0.2 mmol) was allowed to react with MeOH (51.2 mg, 8.0 equiv) under our standard reaction conditions for 50 h. The reaction mixture was chromatographed (silica gel, 12:1 hexane/EtOAc) to afford 58.2 mg (72%) of the indicated compound **55** as a colorless oil: ¹H NMR (CDCl₃) δ 2.25 (s, 3H), 3.46 (s, 3H), 5.34 (s, 1H), 7.26-7.47 (m, 8H), 7.94-7.98 (m, 2H); ¹³C NMR (CDCl₃) δ 13.1, 57.2, 67.3, 79.6, 123.3, 126.5, 127.0, 127.7, 128.1, 128.5, 130.6, 140.8, 150.08, 150.13 (one sp² carbon missing due to overlap); IR (CH₂Cl₂) 3060, 3028, 2925, 1602, 1485 cm⁻¹; HRMS *m/z* 404.0279 (calcd for C₁₉H₁₇IO₂, 404.0273).

3-Iodo-4-[methoxy(phenyl)methyl]-2,5-diphenylfuran (**58**). Compound **57** (61.6 mg, 0.2 mmol) was allowed to react with MeOH (51.2 mg, 8.0 equiv) under our standard reaction conditions for 50 h. The reaction mixture was chromatographed (silica gel, 12:1 hexane/EtOAc) to afford 66.1 mg (71%) of the indicated compound **58** as a white solid: mp 94-95 °C; ¹H NMR (CDCl₃) δ 3.43 (s, 3H), 5.75 (s, 1H), 7.25-7.51 (m, 11H), 7.69-7.72 (m, 2H), 8.11-8.15 (m, 2H); ¹³C NMR (CDCl₃) δ 57.1, 68.2, 123.3, 127.0, 127.1, 127.6, 128.4, 128.59, 128.63, 128.65, 128.67, 130.1, 130.4, 140.2, 151.5, 152.1 (one sp²)

carbon missing due to overlap); IR (CH₂Cl₂) 3059, 3029, 2927, 1602, 1481 cm⁻¹; HRMS m/z 466.0437 (calcd for C₂₄H₁₉IO₂, 466.0430).

cis-5-Benzyl-3-iodo-4-methoxy-2-phenyl-4,5,6,7-tetrahydrobenzofuran (67).

Compound **66** (57.2 mg, 0.2 mmol) was allowed to react with MeOH (51.2 mg, 8.0 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 12:1 hexane/EtOAc) to afford 19.8 mg (22%) of the indicated compound **67** as a light yellow oil: ¹H NMR (CDCl₃) δ 1.76-1.80 (m, 1H), 1.97-2.04 (m, 2H), 2.51-2.63 (m, 1H), 2.69-2.81 (m, 2H), 2.96-3.03 (m, 1H), 3.63 (s, 3H), 3.98 (s, 1H), 7.21-7.28 (m, 3H), 7.29-7.36 (m, 3H), 7.38-7.43 (m, 2H), 7.91-7.95 (m, 2H); ¹³C NMR (CDCl₃) δ 23.2, 23.6, 38.6, 43.1, 59.4, 66.1, 73.8, 124.9, 126.2, 126.6, 128.1, 128.5, 128.6, 129.5, 130.8, 140.9, 150.6, 154.3; IR (CH₂Cl₂) 3025, 2930, 2818, 1629, 1602, 1484, 1459 cm⁻¹; HRMS *m/z* 444.0593 (calcd for C₂₂H₂₁IO₂, 444.0586).

trans-5-Benzyl-3-iodo-4-methoxy-2-phenyl-4,5,6,7-tetrahydrobenzofuran (68).

The reaction mixture was chromatographed (silica gel, 12:1 hexane/EtOAc) to afford,

together with **67**, 42.1 mg (47%) of the indicated compound **68** as a light yellow oil: 1 H NMR (CDCl₃) δ 1.71-1.78 (m, 1H), 2.13-2.21 (m, 1H), 2.44-2.59 (m, 3H), 2.67-2.72 (m, 2H), 3.43 (s, 3H), 3.90 (d, J = 0.9 Hz, 1H), 7.18-7.22 (m, 2H), 7.24-7.28 (m, 1H), 7.30-7.37 (m, 3H), 7.39-7.47 (m, 2H), 7.96-8.01 (m, 2H); 13 C NMR (CDCl₃) δ 19.9, 22.2, 36.2, 38.0, 57.2, 65.9, 76.1, 122.3, 126.4, 128.1, 128.6, 128.7, 129.1, 130.8, 140.5, 150.7, 153.2; IR (CH₂Cl₂) 3025, 2930, 2821, 1615, 1603, 1484, 1453 cm⁻¹; HRMS m/z 444.0592 (calcd for C₂₂H₂₁IO₂, 444.0586).

Representative procedure for the PhSeCl-induced cyclizations. To the mixture of appropriate 2-(1-alkynyl)-2-alken-1-one (0.2 mmol), PhSeCl (3.0 equiv) and NaHCO₃ (3.0 equiv), was added a solution of nucleophile (10 equiv) in CH₃CN (2.0 mL). The resulting mixture was stirred at room temperature for 1 h unless otherwise specified. The mixture was diluted with ether (25 mL), washed with brine (15 mL) and dried (MgSO₄). The solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel.

4-Methoxy-2-phenyl-3-phenylseleno-4,5,6,7-tetrahydrobenzofuran (5).

Compound **1** (39.2 mg, 0.2 mmol) was allowed to react with MeOH (64 mg, 10 equiv) under our standard reaction conditions for 1 h. The reaction mixture was chromatographed (silica gel, 9:1 hexane/EtOAc) to afford 34.2 mg (45%) of the indicated compound **5** as a light yellow oil: 1 H NMR (CDCl₃) δ 1.44-1.57 (m, 1H), 1.82-1.91 (m, 1H), 2.00-2.14 (m, 2H), 2.55-2.68 (m, 1H), 2.72-2.82 (m, 1H), 3.31 (s, 3H), 4.13 (t, J =

2.7 Hz, 1H), 7.11-7.24 (m, 3H), 7.26-7.38 (m, 5H), 7.93-7.98 (m, 2H); 13 C NMR (CDCl₃) δ 18.2, 23.4, 27.3, 57.1, 71.3, 103.6, 124.1, 126.1, 126.6, 128.1, 128.5, 129.2, 129.4, 130.9, 132.8, 153.6, 154.4; IR (CH₂Cl₂) 3056, 2938, 1603, 1577, 1478 cm⁻¹; HRMS m/z 384.0636 (calcd for C₂₁H₂₀O₂Se, 384.0629).

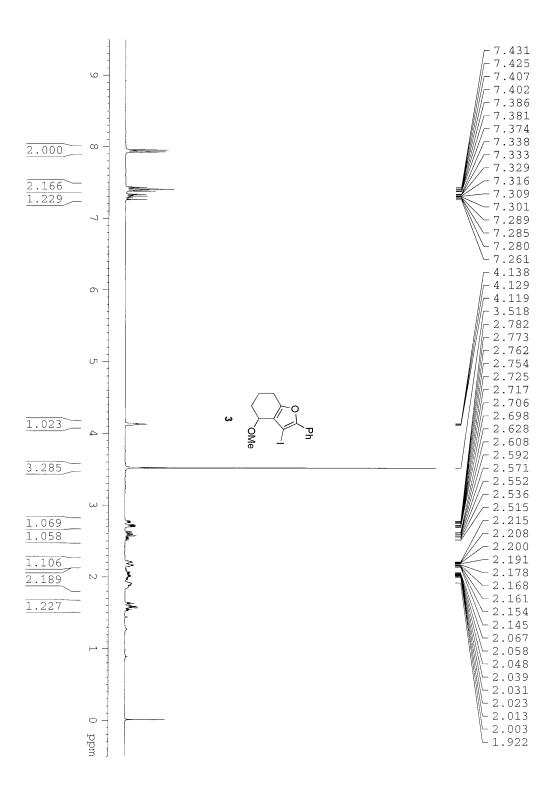
This compound was prepared by following a procedure from the literaure.⁸ The Pd catalyst (11.8 mg, 5 mol %), Cs_2CO_3 (195 mg, 0.6 mmol), furan **27** (87.1 mg, 0.20 mmol) and DMA (2.5 mL), were placed in a vial. The resulting mixture was heated under a N_2 atmosphere at 100 °C for 17 h. The mixture was allowed to cool to room temperature, diluted with diethyl ether (30 mL), washed with satd aq NH₄Cl (15 mL), dried (MgSO₄), and filtered. The solvent was removed under reduced pressure and the residue was purified by column chromatography (9:1 hexane/EtOAc) on silica gel to afford 46.6 mg (76%) of the indicated compound **79** as a white solid: mp 156-157 °C; ¹H NMR (CDCl₃) δ 1.81-2.05 (m, 4H), 2.55-2.64 (m, 1H), 2.73-2.80 (m, 1H), 4.49-4.56 (m, 2H), 4.76 (d, J = 9.0 Hz, 1H), 7.24-7.35 (m, 5H), 7.42-7.45 (m, 1H), 7.54-7.56 (m, 1H), 7.69-7.71 (m, 2H); ¹³C NMR (CDCl₃) δ 20.7, 23.4, 30.8, 68.2, 68.8, 120.5, 121.0, 125.8, 127.6, 127.70, 127.73, 128.7, 128.8, 131.1, 131.5, 134.7, 137.5, 146.0, 152.1; IR (CH₂Cl₂) 3057, 2945, 2856, 1603, 1497 cm⁻¹; HRMS m/z 302.1312 (calcd for $C_{21}H_{18}O_{2}$, 302.1307).

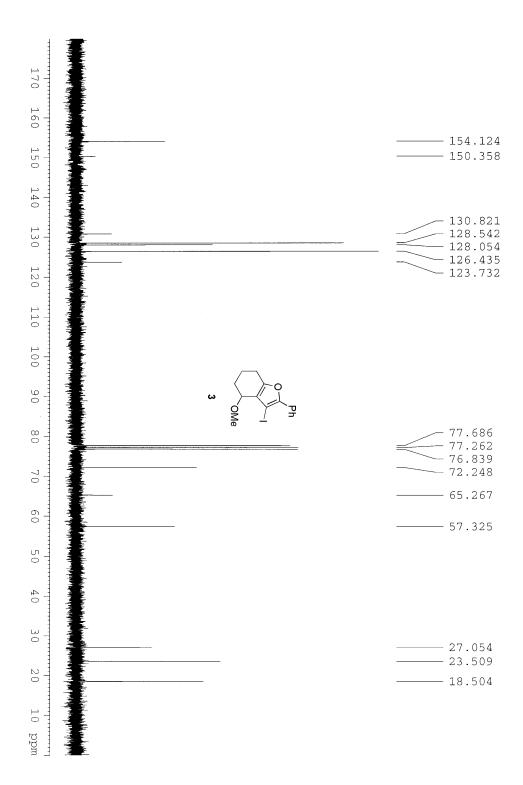
This compound was prepared by following a procedure from the literaure. Pd(OAc)₂ (4.5 mg, 10 mol %), PPh₃ (10.5 mg, 20 mol %), n-Bu₄NCl (55.3 mg, 0.2 mmol), 88% HCO₂H (31.4 mg, 0.6 mmol), piperidine (68.2 mg, 0.8 mmol), furan **28** (90.7 mg, 0.20 mmol) and CH₃CN (5 mL), were placed in a vial. The resulting mixture was heated under a N₂ atmosphere at 60 °C for 14 h. The mixture was allowed to cool to room temperature, diluted with diethyl ether (30 mL), washed with satd aq NH₄Cl (15 mL), dried (MgSO₄), and filtered. The solvent was removed under reduced pressure and the residue was purified by column chromatography (9:1 hexane/EtOAc) on silica gel to afford 49.2 mg (75%) of the indicated compound **80** as a yellow oil: ¹H NMR (CDCl₃) δ 1.35-1.48 (m, 1H), 1.78-1.92 (m, 1H), 2.13-2.29 (m, 2H), 2.58-2.77 (m, 2H), 4.48 (dd, J = 2.1, 14.4 Hz, 1H), 4.52-4.59 (m, 1H), 5.03 (dd, J = 1.2, 14.1 Hz, 1H), 7.11-7.15 (m, 1H)2H), 7.19-7.26 (m, 1H), 7.29-7.36 (m, 4H), 7.39-7.55 (m, 2H), 7.76-7.80 (m, 2H); ¹³C NMR (CDCl₃) δ 20.7, 22.9, 29.4, 67.5, 71.9, 114.8, 121.9, 123.4, 127.1, 127.7, 128.2, 128.5, 128.8, 129.4, 132.6, 136.8, 147.9, 148.4; IR (CH₂Cl₂) 3056, 3021, 2946, 2846, 1673, 1599, 1486 cm⁻¹; HRMS m/z 328.1471 (calcd for $C_{23}H_{20}O_2$, 328.1463).

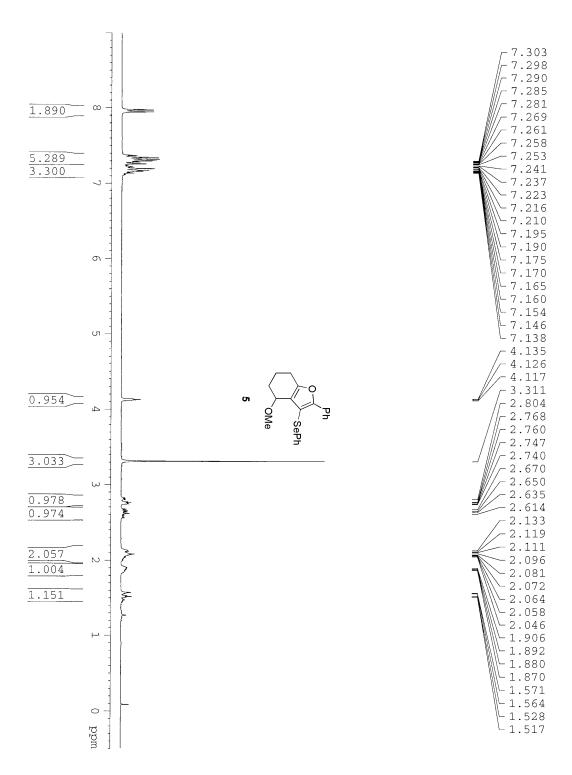
This compound was prepared by following a procedure from the literaure. Pd(OAc)₂ (4.5 mg, 10 mol %), PPh₃ (10.5 mg, 20 mol %), Et₃N (81 mg, 0.8 mmol) and furan **24** (76.9 mg, 0.20 mmol) in CH₃CN (4.5 mL) were refluxed for 3 h. The mixture was allowed to cool to room temperature, diluted with diethyl ether (30 mL), washed with satd aq NH₄Cl (15 mL), dried (MgSO₄), and filtered. The solvent was removed under reduced pressure and the residue was purified by column chromatography (12:1 hexane/EtOAc) on silica gel to afford 23.3 mg (46%) of the indicated compound **81** as a light yellow solid: mp 68-70 °C; ¹H NMR (CDCl₃) δ 1.34-1.44 (m, 1H), 1.76-1.91 (m, 1H), 2.09-2.25 (m, 2H), 2.56-2.72 (m, 2H), 4.31-4.43 (m, 2H), 4.48-4.53 (m, 1H), 4.89 (s, 1H), 5.66 (s, 1H), 7.26-7.31 (m, 1H), 7.39 (t, J = 5.9 Hz, 2H), 7.68-7.71 (m, 2H); ¹³C NMR (CDCl₃) δ 20.6, 22.7, 29.2, 72.0, 72.2, 106.8, 113.6, 121.5, 127.3, 128.0, 128.5, 132.0, 135.2, 147.7, 149.0; IR (CH₂Cl₂) 3007, 2946, 2848, 1669, 1602, 1443 cm⁻¹; HRMS m/z 252.1154 (calcd for C₁₇H₁₆O₂, 252.1150).

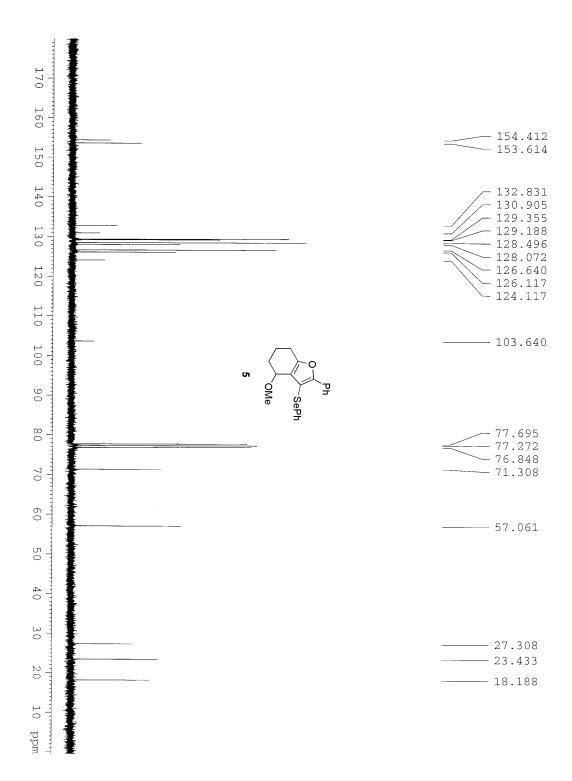
The reaction mixture was chromatographed (silica gel, 12:1 hexane/EtOAc) to afford, together with **81**, 7.6 mg (15%) of the indicated compound **82** as a colorless oil: 1 H NMR (CDCl₃) δ 1.60-1.69 (m, 1H), 1.79-1.88 (m, 1H), 1.92 (d, J = 1.2 Hz, 3H), 2.14-2.21 (m, 1H), 2.29-2.35 (m, 1H), 2.63-2.68 (m, 2H), 4.87-4.92 (m, 1H), 6.29 (d, J = 1.2 Hz, 1H), 7.27-7.31 (m, 1H), 7.35-7.41 (m, 2H), 7.56-7.60 (m, 2H); IR (CH₂Cl₂) 3013, 2941, 2851, 1669, 1600, 1445 cm⁻¹; HRMS m/z 252.1154 (calcd for C₁₇H₁₆O₂, 252.1150).

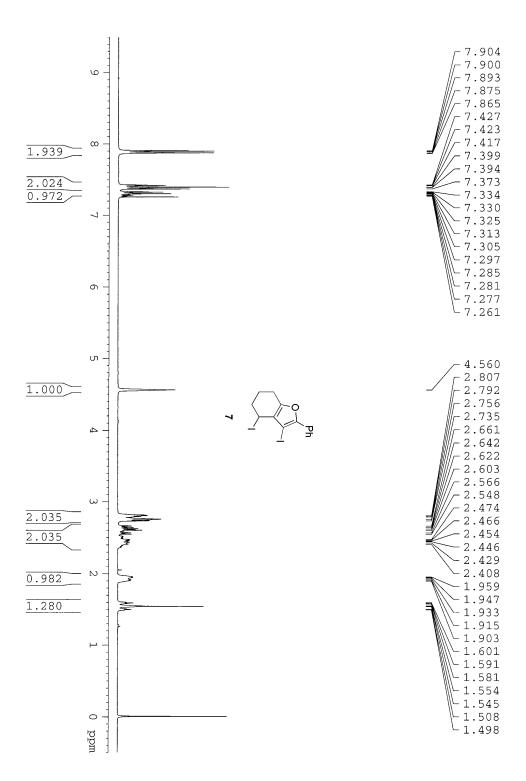
Pd(PCy₃)₂ (8.4 mg, 10 mol %), CsO₂CCMe₃ (117 mg, 20 mol %), furan **3** (88.5 mg, 0.25 mmol), H₂O (9 mg, 0.5 mmol) and DMF (6 mL) were placed in a vial. The resulting mixture was heated under a CO atmosphere (1 atm) at 110 °C for 7 h. The mixture was allowed to cool to room temperature, diluted with diethyl ether (30 mL), washed with satd aq NH₄Cl (15 mL), dried (MgSO₄), and filtered. The solvent was removed under reduced pressure and the residue was purified by column chromatography (2:1 hexane/EtOAc) on silica gel to afford 36.2 mg (53%) of the indicated compound **83** as a white solid: mp 159-160 °C; ¹H NMR (CDCl₃) δ 1.78-1.90 (m, 2H), 1.97-2.10 (m, 2H), 2.51-2.66 (m, 1H), 2.69-2.80 (m, 1H), 3.50 (s, 3H), 4.64 (t, J = 3.7 Hz, 1H), 7.36-7.44 (m, 3H), 7.83-7.89 (m, 2H); ¹³C NMR (CDCl₃) δ 18.5, 23.2, 26.8, 56.5, 72.2, 112.8, 118.6, 128.3, 128.8, 129.5, 130.0, 153.5, 157.9, 166.8; IR (CH₂Cl₂) 3059, 2930, 1711, 1681, 1491 cm⁻¹; HRMS m/z 272.1052 (calcd for C₁₆H₁₆O₄, 272.1049).


This compound was prepared by following a procedure from the literaure.¹¹ Furan **2** (45.6 mg, 0.20 mmol) and DDQ (85 mg, 0.34 mmol) in benzene (6.5 mL) were refluxed for 6 h. The mixture was allowed to cool to room temperature, filtrated, washed with 10


% Na₂CO₃ (6 mL), dried (MgSO₄), and filtered. The solvent was removed under reduced pressure and the residue was purified by column chromatography (12:1 hexane/EtOAc) on silica gel to afford 17.7 mg (40%) of the indicated compound **84** as a colorless oil: 1 H NMR (CDCl₃) δ 3.97 (s, 3H), 6.67 (dd, J = 0.9, 7.5 Hz, 1H), 7.13-7.26 (m, 3H), 7.31-7.36 (m, 1H), 7.41-7.48 (m, 2H), 7.83-7.87 (m, 2H); 13 C NMR (CDCl₃) δ 55.8, 99.0, 103.5, 104.7, 119.8, 125.0, 125.2, 128.5, 129.0, 130.8, 153.7, 154.9, 156.3; IR (CH₂Cl₂) 2961, 1607, 1486, 1252 cm⁻¹; HRMS m/z 224.0841 (calcd for C₁₅H₁₂O₂, 224.0837).


References


- 1. Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 2677.
- Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.; Wovkulich, P. M.;
 Uskokovic, M. R. *Tetrahedron Lett.* 1992, 33, 917.
- 3. Miller, M. W.; Johnson, C. R. J. Org. Chem. 1997, 62, 1582.
- 4. Mayasundari, A.; Young, D. G. J. Tetrahedron Lett. 2001, 42, 203.
- 5. Zhang, F.; Li, Y. Synthesis, 1993, 565.
- 6. Lautens, M.; Maddess, M. L.; Sauer, E. L. O.; Quellet, S. G. Org. Lett. 2002, 4, 83.
- Dai, W.-M.; Wu, J.; Fong, K. C.; Lee, M. Y. H.; Lau, C. W. J. Org. Chem. 1999, 64, 5062.
- 8. Hennings, D. D.; Iwasa, S.; Rawal, V. H. J. Org. Chem. 1997, 62, 2.
- 9. Grigg, R.; Loganathan, V.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. *Tetrahedron* **1996**, *52*, 11479.
- 10. Knight, S. D.; Overman, L. E. *Heterocycles* **1994**, *39*, 497.


11. Zambias, R. A.; Caldwell, C. G.; Kopka, I. E.; Hammond, M. L. *J. Org. Chem.* **1988**, 53, 4135.

