Acknowledgement. We gratefully acknowledge Peng Feng, Taixing Wu, and Clive Workman for technical assistance. We thank T. Coplen and J.K. Boehlke for nitrate and nitrite standards. This work was supported by NSF Grants OCE-0214365, OCE-9986061, and OCE-9902450.

Supporting Information Available.

Derivation for the 17O correction for mass independent δ^{15}N calculations of nitrous oxide.

The 17O correction for δ^{15}N can be derived as follows. Starting with the definition of δ^{15}N:

$$\delta^{15}N = \left(\frac{^{15}R_S - ^{15}R_R}{^{15}R_R} \right) \times 1000$$

where $^{15}R_S$ is the ratio $^{15}N/^{14}N$ of the sample and $^{15}R_R$ is the ratio $^{15}N/^{14}N$ of the reference.

Since the mass 45 signal is a combination of both ^{15}N and ^{17}O from N$_2$O, the calculated δ^{45}N$_2$O value will also be a combination of the two, and $^{15}R_S$ cannot be measured directly. Therefore the above equation needs to be expressed in terms that are measured directly or known from previous experiments. Terms that are known are the ^{17}R (assuming mass dependent fractionation) and ^{15}R of the standard. δ^{45}N$_2$O is measured directly, and so is δ^{18}O. Fortunately in most cases mass dependent fractionation dominates, and the assumption that δ^{17}O = 0.52 δ^{18}O is valid. If the above equation is transformed into these terms, the δ^{15}N of the sample can be found.

The mass spectrometer is tuned to measure m/z 44, 45, and 46. Mass 44 consists of $^{14}N^{14}N^{16}O$ ions. Mass 45 consists primarily of $^{15}N^{14}N^{16}O$, $^{14}N^{15}N^{16}O$, and $^{14}N^{14}N^{17}O$ ions. Mass 46 consists primarily of $^{14}N^{14}N^{18}O$ ions. Next we solve for ^{45}R and ^{46}R in terms of ^{15}R, ^{17}R, and ^{18}R:

$$^{45}R = \frac{m/z45}{m/z44} = \frac{^{15}N^{14}N^{16}O + ^{14}N^{15}N^{16}O + ^{14}N^{14}N^{17}O}{^{14}N^{14}N^{16}O} = ^{15}R + ^{15}R + ^{17}R = 2^{15}R + ^{17}R$$
\[\delta^{15}N = \frac{^{15}R - ^{15}R}{^{15}R} \times 1000 \]

Through substitution and arrangement, we can obtain a \(\delta^{15}N \) equation in a more useful form:

\[\frac{^{14}N^{14}N^{18}O}{^{14}N^{16}N^{16}O} = ^{18}R \]

\[^{15}R = \frac{^{45}R - ^{17}R}{2} \]

\[^{17}R = ^{45}R - ^{2}^{15}R \]

\[\delta^{15}N = \left(\frac{^{15}R - ^{15}R}{^{15}R} \right) \times 1000 = \left[\left(\frac{^{45}R - ^{17}R}{2^{15}R} \right) - \left(\frac{^{45}R - ^{17}R}{2^{15}R} \right) \right] \times 1000 \]

\[= \left(\frac{^{45}R - ^{45}R}{2^{15}R} \right) \times 1000 \]

\[= \left(\frac{^{45}R - ^{45}R}{2^{15}R} \right) \times 1000 \]

\[= \left(\frac{^{17}R - ^{17}R}{2^{15}R} \right) \times 1000 \]

\[= \left(\frac{^{17}R - ^{17}R}{2^{15}R} \right) \delta^{15}N - \left(\frac{^{17}R - ^{17}R}{2^{15}R} \right) \delta^{17}O \]

\[= \left(\frac{^{17}R + ^{2}^{15}R}{2^{15}R} \right) \delta^{15}N - \left(\frac{^{17}R - ^{17}R}{2^{15}R} \right) \delta^{17}O \]

\[\delta^{15}N = \left(\frac{^{17}R}{2^{15}R} + 1 \right) \delta^{15}N - \left(\frac{^{17}R}{2^{15}R} \right) 0.52 \delta^{46}N^{2}O \]

which is the equation used in all calculations of \(\delta^{15}N \) of \(N_2O \).