Supporting Information

Title:
End-Cap Effects on Vibrational Structures of Finite-length Carbon Nanotubes

Authors:
Takashi Yumura,* Daijiro Nozaki, Shunji Bandow, Kazunari Yoshizawa, and Sumio Iijima

Contents

[1] Figure S1 Computed vibrational modes with A_{1g} symmetries for the isotope-labeled C$_{60}$ ((a 12C$_{40}$ 13C$_{20}$ and (b) 12C$_{42}$ 13C$_{18}$). The values represent calculated frequencies.

[2] Figure S2 Vibrational modes with A_{1g} symmetries for the C$_{20n}$H$_{20}$ series, and their calculated frequencies. The values in parenthesis give calculated isotope shifts upon 13C isotope substitutions in the cylindrical segments.

[3] Figure S3 Vibrational modes with A_{1g} or A_{1}' symmetries for the C$_{18n}$H$_{18}$ series, and their calculated frequencies. The values in parenthesis give calculated isotope shifts upon 13C isotope substitutions in the cylindrical segments.

[4] Figure S4 Vibrational modes with A_{1g} symmetries for the C$_{40+20n}$ series, and their calculated frequencies. The values in parenthesis give calculated isotope shifts upon 13C isotope substitutions in the cylindrical segments.

[5] Figure S5 Vibrational modes with A_{1g} or A_{1}' symmetries for the C$_{42+18n}$ series, and their calculated frequencies. The values in parenthesis give calculated isotope shifts upon 13C isotope substitutions in the cylindrical segments.

[6] Figure S6 Calculated IR intense modes for C$_{60}$, C$_{114}$, and C$_{120}$.

[7] Figure S7 Calculated IR intense modes for C$_{20}$H$_{20}$, C$_{100}$H$_{20}$, C$_{18}$H$_{18}$, and C$_{90}$H$_{18}$.

[8] Complete Ref. 23
Figure S1 Computed vibrational modes with A_{1g} symmetries for the isotope-labeled C$_{60}$ ((a) 12C$_{40}$-13C$_{20}$ and (b) 12C$_{42}$-13C$_{18}$). The values represent calculated frequencies.
Figure S2 Vibrational modes with A_{1g} symmetries for the C$_{20}$H$_{20}$ series, and their calculated frequencies. The values in parenthesis give calculated isotope shifts upon 13C isotope substitutions in the cylindrical segments.
Figure S3 Vibrational modes with A_{1g} or A_{1}' symmetries for the C$_{18}$H$_{18}$ series, and their calculated frequencies. The values in parenthesis give calculated the isotope shifts.
Figure S4 Vibrational modes with A_{1g} symmetries for the C_{40+n_2} series, and their calculated frequencies. The values in parenthesis give calculated isotope shifts upon 13C isotope substitutions in the cylindrical segments.
Figure S5 Vibrational modes with A_{1g} or A_{1}' symmetries for the C$_{42+18n}$ series, and their calculated frequencies. The values in parenthesis give calculated isotope shifts upon 13C isotope substitutions in the cylindrical segments.
Figure S6 Calculated IR intense modes for C$_{60}$, C$_{114}$, and C$_{120}$.
Figure S7 Calculated IR intense modes for C_{20}H_{20}, C_{100}H_{20}, C_{18}H_{18}, and C_{90}H_{18}.