Supporting Information

“A unified picture of static and dynamic length-scales in polymer solutions”,
by T. Uematsu, C. Svanberg, P. Jacobsson

Photon correlation spectroscopy (PCS): We have measured the collective diffusion coefficient \(D_c\) for atactic polystyrene \(M_w = 301,600\ \text{g/mol,}\ \ M_w/M_n = 1.04\) in toluene at 25 °C, in order to derive \(\xi_h\) through the Stokes-Einstein relation. The PCS measurements were performed under homodyne conditions with a frequency doubled Nd-Vanadate laser (532 nm) and a correlator (ALV-5000/FAST) over the time range \(10^{-7}\ \text{to}\ 10^4\ \text{sec.}\) The obtained intermediate scattering functions exhibit bimodal relaxation behaviors composed of a fast diffusive process and a slow diffusive process, which can be described by two well-separated exponential decays. At lower polymer concentrations (roughly below 10 wt %), only the fast process is visible. The PCS results are in excellent agreement with literature\(^1,2\). We have derived \(D_c\) data using the observed fast relaxation time, \(\tau_{fast}\), following the standard procedure:

\[
D_c = 1/(\tau_{fast}q^2(1-\phi)),
\]

where \(q\) is the scattering vector, \(\phi\) is the polymer volume fraction, and \((1-\phi)\) corrects for the solvent backflow.\(^1\)
The least-squares fit procedure: In order to examine various power law regimes in the experimental data, the following functions were employed:

\[
\xi_s^{(i)} = \begin{cases}
\phi^{-0.75} & \phi < \Phi_{I-II} \\
\phi^{-0.5} & \Phi_{I-II} \leq \phi < \Phi_{II-III} \\
\phi^{-1} & \Phi_{II-III} \leq \phi < \Phi_{III-IV} \\
\phi^{-2} & \Phi_{III-IV} \leq \phi < \Phi_{IV-V} \\
\phi^0 & \Phi_{IV-V} \leq \phi
\end{cases}
\]

Figure 2A: The static correlation length, \(\xi_s^{(i)} \)

\[
\xi_h^{(i)} = \begin{cases}
\phi^{-0.75} & \phi \leq \Phi_{I-II} \\
\phi^{-0.5} & \Phi_{I-II} < \phi \leq \Phi_{II-III} \\
\phi^{-1} & \Phi_{II-III} < \phi \leq \Phi_{III-IV} \\
\phi^{-2} & \Phi_{III-IV} < \phi \leq \Phi_{IV-V} \\
\phi^0 & \Phi_{IV-V} < \phi
\end{cases}
\]

Figure 2A: The dynamic correlation length \(\xi_h^{(i)} \)

\[
\xi_s^{(i)} = \begin{cases}
\phi^{-0.75} & \phi \leq \Phi_{I-II} \\
\phi^{-0.5} & \Phi_{I-II} < \phi \leq \Phi_{II-III} \\
\phi^{-1} & \Phi_{II-III} < \phi \leq \Phi_{III-IV} \\
\phi^{-2} & \Phi_{III-IV} < \phi \leq \Phi_{IV-V} \\
\phi^0 & \Phi_{IV-V} < \phi
\end{cases}
\]

Figure 3B: The dynamical correlation length \(\xi_s^{(i)} \)

\[
g_s^{(i)} = \begin{cases}
\phi^{-1} & \phi \leq \Phi_{I-II} \\
\phi^{-2} & \Phi_{I-II} < \phi \leq \Phi_{II-III} \\
\phi^{-3} & \Phi_{II-III} < \phi \leq \Phi_{III-IV} \\
\phi^{-4} & \Phi_{III-IV} < \phi \leq \Phi_{IV-V} \\
\phi^0 & \Phi_{IV-V} < \phi
\end{cases}
\]

Figure 2B and 3C: The number of monomers, \(g_s^{(i)} \), per blob, \(g_h^{(i)} \), within \(2\xi_h^{(i)} \).

Here, \(\xi_s, \xi_h, g_s \) and \(g_h \) are the static correlation length, the dynamic correlation length, the number of monomers per blob, and the monomer number within \(2\xi_h \), respectively. \(\xi_{s0}, \xi_{h0}, g_{s0} \) and \(g_{h0} \) are the amplitudes, \(\phi \) is the polymer volume fraction, and \(\Phi_{i-j} \) denotes \(\phi \) at the crossover from regime \(i \) to regime \(j \). The above functions use the theoretical power law exponents of \(\phi \) for \(\xi \) and \(g \). In the fit procedure, the different \(\Phi_{i-j} \) parameters were used as fitting parameters. As a result, the following fitting parameters were obtained:

\[\xi_s: \xi_{s0} = 0.19 \pm 0.02 \text{ nm}, \Phi_{I-II} = 0.017 \pm 0.006, \Phi_{II-III} = 0.106 \pm 0.008, \Phi_{III-IV} = 0.41 \pm 0.03, \Phi_{IV-V} = 0.65 \pm 0.03. \]

Note: In order to examine the influence of the large uncertainty in \(\Phi_{I-II} \) obtained using Equation 1 on the three parameters (\(\Phi_{II-III}, \Phi_{III-IV} \) and \(\Phi_{IV-V} \)), we also performed a least-squares fit with regime I excluded.
\[
\begin{align*}
\xi_h &= \begin{cases}
\phi^{-0.5} & \phi \leq \Phi_{\text{II-III}} \\
\Phi_{\text{II-III}}^{-0.5} \phi^{-1} & \Phi_{\text{II-III}} < \phi \leq \Phi_{\text{III-IV}} \\
\Phi_{\text{II-III}}^{-0.5} \Phi_{\text{III-IV}}^{-2} \phi^{-2} & \Phi_{\text{III-IV}} < \phi \leq \Phi_{\text{IV-V}} \\
\Phi_{\text{II-III}}^{-0.5} \Phi_{\text{III-IV}}^{-2} \phi^{-2} \phi^0 & \Phi_{\text{IV-V}} < \phi
\end{cases}
\end{align*}
\] (5)

The parameters (\(\Phi_{\text{II-III}}, \Phi_{\text{III-IV}}\) and \(\Phi_{\text{V-L-V}}\)) determined from both least-squares fit procedures are identical within errors.

The obtained uncertainty in \(\Phi_{\text{I-II}}\) might be ascribed to relatively low molecular weight polystyrene\(^3,4\) \((M_w \approx 110,000, M_w/M_n < 1.06)\) used for \(\xi_s\) at the concentrations where regime I is expected. The crossover from regime I to II can be expected only for high molecular weight polymer of which gyration radius, \(R_g\), is sufficiently larger than the thermal blob radius \((\approx 7 \text{ nm in the present system})\). However, the \(R_g\) \((\approx 9 \text{ nm})\) of the polystyrene used for \(\xi_s\) is barely above the thermal blob radius.

\[\xi_h \text{ (using the neat solvent viscosity): } \xi_{h0} = 0.33 \pm 0.02 \text{ nm, } \Phi_{\text{I-II}} = 0.017 \pm 0.003.\]

\[\xi_h \text{ (using the effective local viscosity): } \xi_{h0} = 0.31 \pm 0.02 \text{ nm, } \Phi_{\text{I-II}} = 0.019 \pm 0.002, \Phi_{\text{II-III}} = 0.080 \pm 0.003, \Phi_{\text{III-IV}} = 0.263 \pm 0.005.\]

Note: Complementary curve-fits with the power law exponents as free parameters yield: \(\xi_{h0} = 0.5 \pm 0.2 \text{ nm, } \Phi_{\text{I-II}} = 0.019 \pm 0.009, \Phi_{\text{II-III}} = 0.083 \pm 0.006, \Phi_{\text{III-IV}} = 0.26 \pm 0.01, \alpha_1 = -0.7 \pm 0.1, \alpha_\Pi = -0.53 \pm 0.03, \alpha_\Pi = -0.99 \pm 0.04, \alpha_\IV = -2.00 \pm 0.07.\) Here, \(\alpha_i\) denotes the observed power law exponent at the concentration range where regime \(i\) is expected.

\[g_s: g_{s0} = 9.3 \pm 0.4, \Phi_{\text{II-III}} = 0.107 \pm 0.007.\]

Note: The theoretical exponent change at the I/II-crossover for \(g\) is minor (i.e., -1.25 \(\to\) -1). Therefore, in order to increase the stability of the least-squares fit procedure, Equation 4 includes only two theoretical exponents (i.e., -1, -2) for \(g\) expected in the concentration regimes from regime II to IV. Thus, \(\Phi_{\text{I-II}}\) is not included in the results. \(\Phi_{\text{III-IV}}\) is also not included in the results since the theoretical exponent change at the III/IV-crossover for \(g\) is none.
\(g_{h0} = 4.5 \pm 0.1, \Phi_{\text{II-III}} = 0.076 \pm 0.003. \)

Note: We performed the same fit procedure as for \(g_s \). Thus, \(\Phi_{\text{I-II}} \) and \(\Phi_{\text{III-IV}} \) are not included in the results for the same reason as for \(g_s \).

References

