Supporting Information for the manuscript entitled

Bipyridinium Ionic Liquid Promoted Cross-Coupling
Reactions Between Perfluoroalkyl or Pentafluorophenyl
Halides with Aryl Iodides

Ji-Chang Xiao, Chengfeng Ye and Jean’ne M. Shreeve*

Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343
jshreeve@uidaho.edu

Table of Contents

S2. Synthetic procedure for ionic liquid 1
S3. Experimental details for copper catalyzed cross coupling reactions
S5. Procedure for the recycling of ionic liquid, 1
S5. References
All reagents were purchased from commercial sources and used without further purification. Copper was freshly activated by treatment with iodine and then washed with HCl in acetone, followed by acetone alone, ether, and dried in vacuo.1 TLC analysis was performed with Al backed plates precoated with silica gel and examined under UV (254 nm). Flash column chromatography was executed on silica gel (60-200 \(\mu \text{m} \), 60 A).1H, 19F and 13C NMR spectra were recorded in CDCl\(_3\) and CD\(_3\)COCD\(_3\) on an instrument operating at 300 MHz. Chemical shifts are reported in parts per million relative to the appropriate standard: CFCl\(_3\) for 19F and TMS for 1H and 13C NMR spectra. IR spectra were recorded using KBr plates for neat liquid. Mass spectra for ionic compounds were determined by insertion using a solid probe. M\(^+\) is the mass of the cation. Differential scanning calorimetry (DSC) measurements were performed using a calorimeter equipped with an auto-cool accessory and calibrated using indium. The following procedure was used: cooling from 40 °C to \(-80\) °C and heating to 400 °C at 10 °C/min. The transition temperature, T\(_m\), was taken as peak maximum. Onset of decomposition was taken as when the abnormal section of the plot began. Thermo-gravimetric analysis (TGA) measurements were carried out by heating the sample at 10 °C/min from room temperature to 500 °C in a dynamic nitrogen atmosphere (flow rate = 70 mL/min).

Elemental analysis was carried out commercially.

1. Synthesis of 1-butyl-2,2’-bipyridinium bis(trifluoromethanesulfonyl)amide, 1

2,2’-Bipyridine (1 mmol, 0.156 g) and CH\(_3\)CH\(_2\)CH\(_2\)CH\(_2\)I (1.5 mmol, 0.276 g) were mixed at room temperature in a 6 mL Schlenk tube. After the tube was cooled to \(-195\) °C, it was evacuated and closed. The reaction mixture was heated at 100 \(- 110\) °C for 24 h. The brown residue was dissolved in a mixture of water and acetone (1 : 1) and
treated with an aqueous solution of LiN(SO$_2$CF$_3$)$_2$ (1.5 mmol, 0.431 g). After 6 h, acetone was removed at reduced pressure. The water layer was extracted with CH$_2$Cl$_2$, 3 × 15 mL. The combined organic layer was washed with water (3 × 15 mL), dried by MgSO$_4$, and evaporated in vacuo. Removing traces of 2,2’-bipyridine by sublimation gave 1 as a pale yellow liquid (0.445 g, 90 %). 1H NMR (CD$_3$COCD$_3$): 9.29 (d, J = 5.9 Hz, 1 H), 8.81-8.92 (m, 2H), 8.32-8.37 (m, 2H), 8.20 (td, J = 7.8, 1.7 Hz, 1 H), 8.02 (dt, J = 7.9, 1.0 Hz, 1 H), 7.73-7.78 (m, 1 H), 4.88 (t, J = 7.9 Hz, 2 H), 1.93-1.99 (m, 2 H), 1.28-1.36 (m, 2 H), 0.82 (t, J = 7.4 Hz, 3 H). 19F NMR (CD$_3$COCD$_3$): -79.85 (s, 6 F). 13C NMR (CD$_3$COCD$_3$): 154.0, 151.3, 150.9, 147.5, 147.2, 139.3, 131.6, 129.0, 127.1, 127.0, 121.1 (q, J = 319.5 Hz), 59.9, 33.8, 20.0, 13.5. MS (solid probe) (EI) m/z (%): 213 (M$^+$, 100). IR (KBr) ν 3107, 2967, 2940, 2877, 1624, 1579, 1514, 1464, 1439, 1352, 1193, 1138, 1057, 996, 780, 746, 653, 615, 511. Anal. Calcd for C$_{16}$H$_{17}$F$_6$N$_3$O$_4$S$_2$: C, 38.94; H, 3.47; N, 8.52. Found: C, 38.82; H, 3.55; N, 8.68. Tg: -58.79 °C. T$_d$: 308.14 °C.

2. Experimental details for the reaction of perfluoroalkyl or perfluoroaryl halides with aromatic compounds

General Procedure: To the ionic liquid 1 (6 mmol, 3 g) was added copper (1 mmol), perfluoroalkyl or perfluoroaryl halide (1 equiv) and aryl iodide (1 equiv) under dinitrogen atmosphere. The resulting mixture was heated at 75 °C for 20 h. The product was extracted from the mixture by addition of ethyl ether (10 mL), followed by decanting the ethyl ether solution of the product. This was repeated three times. The combined organic layer was concentrated by rotary evaporation. The residue was subjected to short-path column chromatography over silica gel with hexane as the eluent to give the desired product 3a-j.
Nonafluorobutylbenzene, 3a: colorless oil. 1H NMR (CDCl$_3$): 7.54-7.59 (m, 3 H), 7.46-7.51 (m, 2 H). 19F NMR (CDCl$_3$): -81.02 (tt, J = 9.9, 3.1 Hz, 3 F), -110.97 (t, J = 11.3 Hz, 2 F), -122.72 (m, 2 F), -125.54 (m, 2 F). GC-MS (EI) m/z (%): 296 (M$^+$, 7).

1-Methyl-4-(nonafluorobutyl)benzene, 3b: colorless oil. 1H NMR (CDCl$_3$): 7.47 (d, J = 8.1 Hz, 2 H), 7.29 (d, J = 8.1 Hz, 2 H), 2.41 (s, 3 H). 19F NMR (CDCl$_3$): -81.21 (tt, J = 9.6, 3.1 Hz, 3 F), -110.68 (t, J = 11.3 Hz, 2 F), -122.88 (m, 2 F), -125.65 (m, 2 F). GC-MS (EI) m/z (%): 310 (M$^+$, 20).

1-Nitro-4-(nonafluorobutyl)benzene, 3c: white solid. 1H NMR (CDCl$_3$): 8.36 (d, J = 9.0 Hz, 2 H), 7.80 (d, J = 9.0 Hz, 2 H) 19F NMR (CDCl$_3$): -80.94 (tt, J = 9.6, 3.1 Hz, 3 F), -111.29 (t, J = 14.1 Hz, 2 F), -122.43 (m, 2 F), -125.38 (m, 2 F). GC-MS (EI) m/z (%): 341 (M$^+$, 9).

(Tridecafluorohexyl)benzene, 3d: pale yellow oil. 1H NMR (CDCl$_3$): 7.54-7.59 (m, 3 H), 7.46-7.51 (m, 2 H). 19F NMR (CDCl$_3$): -80.77 (tt, J = 10.1, 2.8 Hz, 3 F), -110.71 (t, J = 14.1 Hz, 2 F), -121.35 (m, 2 F), -121.84 (m, 2 F), -122.71 (m, 2 F), -126.03 (m, 2 F). GC-MS (EI) m/z (%): 396 (M$^+$, 4).

1-Methyl-4-(tridecafluorohexyl)benzene, 3e: colorless oil. 1H NMR (CDCl$_3$): 7.46 (d, J = 8.1 Hz, 2 H), 7.28 (d, J = 8.1 Hz, 2 H), 2.41 (s, 3 H). 19F NMR (CDCl$_3$): -80.84 (tt, J = 9.9, 2.5 Hz, 3 F), -110.35 (t, J = 14.1 Hz, 2 F), -122.75 (m, 2 F), -126.08 (m, 2 F). GC-MS (EI) m/z (%): 410 (M$^+$, 11).

2,3,4,5,6-Pentafluoro-1,1'-biphenyl, 3f: white solid. 1H NMR (CDCl$_3$): 7.44-7.48 (m, 3 H), 7.38-7.42 (m, 2 H). 19F NMR (CDCl$_3$): -143.20 (dd, J = 22.6, 8.5 Hz, 2 F), -155.67 (t, J = 22.6 Hz, 1 F), -162.30 (td, J = 22.6, 8.5 Hz, 2 F). GC-MS (EI) m/z (%): 244 (M$^+$, 100).
4'-Methyl-2,3,4,5,6-pentafluorobiphenyl, 3g:6 white solid. 1H NMR (CDCl\textsubscript{3}): 7.29 (s, 4 H), 2.40 (s, 3 H). 19F NMR (CDCl\textsubscript{3}): -143.33 (dd, J = 22.6, 8.5 Hz, 2 F), -156.18 (t, J = 22.6 Hz, 1 F), -162.50 (td, J = 22.6, 8.5 Hz, 2 F). GC-MS (EI) m/z (%): 258 (M+, 100).

4'-Nitro-2,3,4,5,6-pentafluorobiphenyl, 3h:7 pale yellow solid. 1H NMR (CDCl\textsubscript{3}): 8.35 (d, J = 8.4 Hz, 2 H), 7.62 (d, J = 8.4 Hz, 2 H). 19F NMR (CDCl\textsubscript{3}): -142.46 (dd, J = 22.6, 8.5 Hz, 2 F), -152.47 (t, J = 22.6 Hz, 1 F), -160.77 (td, J = 22.6, 8.5 Hz, 2 F). GC-MS (EI) m/z (%): 289 (M+, 100).

1,4-Bis(tridecafluorohexyl)-benzene, 3i:8 pale yellow solid. 1H NMR (CDCl\textsubscript{3}): 7.75 (s, 4 H). 19F NMR (CDCl\textsubscript{3}): -80.75 (tt, J = 9.9, 2.5 Hz, 6 F), -111.15 (t, J = 14.1 Hz, 4 F), -121.30 (m, 4 F), -121.64 (m, 4 F), -122.68 (m, 4 F), -126.03 (m, 4 F). GC-MS (EI) m/z (%): 714 (M+, 1).

2,2'',3,3'',4,4'',5,5'',6,6''-Decafluoro-1,1':4',1''-terphenyl, 3j:9 white solid. 1H NMR (CDCl\textsubscript{3}): 7.55 (s, 4 H). 19F NMR (CDCl\textsubscript{3}): -142.91 (dd, J = 22.6, 8.5 Hz, 4 F), -154.48 (t, J = 22.6 Hz, 2 F), -161.70 (td, J = 22.6, 8.5 Hz, 4 F). GC-MS (EI) m/z (%): 410 (M+, 100).

3. Procedure for the recycling of ionic liquid, 1

After the product was extracted from the reaction mixture with ethyl ether, methylene chloride (15 mL) was added to the residue and stirred for 10 min. The insoluble material was filtered, and washed with CH\textsubscript{2}Cl\textsubscript{2} (3 × 10 mL). The filtrate was washed with pyridine solution (10 wt \%, 2 × 15 mL), H\textsubscript{2}O (2 × 15 mL). Then the CH\textsubscript{2}Cl\textsubscript{2} layer was concentrated under reduced pressure. The resulting liquid was dried in vacuo while heating at 80 °C for 4 h before next cycle.

4. References

1997, 23, 821-832.

(8) Schulte, A.; Hallmark, V. M.; Twieg, G.; Song, K.; Rabolt, J. F. *Macromolecules*

1715-1719.