FILM RESONANCE ON ACOUSTIC WAVE DEVICES:
THE ROLES OF FREQUENCY AND CONTACTING FLUID

C.M. Lagiera, I. Efimovb and A.R. Hillmanb

a Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, AR-2000-Rosario, Argentina

b Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom

Supplementary material

Figure S1: Real part of crystal admittance spectra at the resonator fundamental frequency (nominally 10 MHz) for a PPy/PSS composite film during deposition (potential sweep rate 10 mV s-1). Spectra were recorded after each deposition cycle, but for presentation purposes only selected spectra are shown; figures indicate number of deposition cycles.

Figure S2: Fitted resonant frequency data at the third harmonic for the experiment of Fig. 2 at different stages during the deposition process, corresponding to the film thickness range 0.95 \(\leq h_f / \mu m \leq 1.4\). \textbullet, \(f_f\) : film data. \(\oplus, f_s\): fixed at three times the fundamental frequency; see text for details.) Corresponding \(N'\) values lie in the range 5.0 (\(\pm 0.5\)).
Figure S1
Figure S2

![Graph showing the relationship between h_f (µm) and f (MHz). The graph displays two distinct regions, f_s and f_f, with a horizontal line at $f = 29.96$ MHz for h_f values between 0.9 and 1.4 µm.](image-url)