S1.

Figure S1a. Stoichiometric reactions with MCPBA in MeCN and MeOH. ESI-MS of product of stoichiometric reaction of MCPBA with 1, in MeCN, showing small yields of both di-oxygenate 3, (M+32) and the S-extruded monothiocarbamate 4, (M-16).

Figure S1b. ESI-MS of product of stoichiometric reaction of MCPBA with 1, in MeOH, showing small yields of mono-oxygenate 3.
Figure S2. Electronic absorbance spectra for compounds 1-4. Scale in nanometers, spectra are not normalized, approximately equivalent concentrations ca. 1 mM. Epsilon vs. lambda data are given in Table 1 of the text.
Figure S3. IR spectra of Ru complexes. The IR spectrum of the 1 exhibited the characteristic bands of 2,2'-bipyridine (728, 842,1443 and 1600 cm\(^{-1}\)) and DTC (at 1522 and 974 cm\(^{-1}\)). The ν(CN) stretch absorbances for all complexes were higher than that of the free ligand (ca 1480 cm\(^{-1}\)), implying a greater contribution of the dithiolate tautomer with a partial C-N double bond. The IR spectra of 3 displayed the highest ν(CN) stretch.
Figure S4. Cyclic voltammograms of compounds 1-4, conditions, measured vs. Ag/AgCl reference at glassy carbon electrode in 0.1M $[n$-Bu$_4$N][PF$_6$]/CH$_3$CN; scan rate = 250 mV/s.
S5.
1D and 2D H NMR spectra of compound 1.
S6.

2D H NMR of compound 3.
S7.
Partial assignment of H NMR spectra of compound 4.

1H NMR δ 9.94

1H NMR δ 9.38
2D H NMR of compound 2b.

O,S-bound $2b$
Figure S9. Low temperature NMR of compound 2b.
Both 2a & 2b show a broad peak for the methyl groups at RT. In the 2a spectra shown below, the peak gradually split into two singlets as temperature decreases.
S10.

Figure S10. Computer generated models of the four diastereomeric forms of 2a.
S11.
Figure S11. NMR characterization of the product of the anaerobic reaction of the peroxodithiocarbamate 2a with O-atom acceptor, PEt₃, as illustrated by the equation below. The 3¹P NMR spectra clearly shows the generation of OPEt₃; the ¹H NMR of the reaction solution is consistent with the dithiocarbamate complex 1 as the only Ru-containing product of the reaction.

![Chemical Structures](image)

![NMR Spectra](image)