The Sonogashira Reaction on Quinolizium Cations

Domingo García, Ana M. Cuadro,* Julio Alvarez-Builla, and Juan J. Vaquero*

Departamento de Química Orgánica, Universidad de Alcalá 28871-Alcalá de Henares, Madrid. Spain juanjose.vaquero@uah.es

Supporting Information

Experimental procedures and characterization data for all new compounds reported

(8 pages)

Experimental section

General. Melting points were uncorrected. Infrared spectra were recorded on KBr or NaCl pellets and spectral bands were reported in cm⁻¹. ¹H NMR spectra were recorded at 200 and 300 MHz and ¹³C NMR at 50 and 75 MHz. Chemical shifts were reported as δ values (ppm). Low-resolution mass spectra (MS) were obtained as ESI (Na). CuI, PdCl₂(PPh₃)₂, were purchased from Aldrich. The acetylenes: triisopropylsilylacetylene, trimethylsilylacetylene, 1-ethynyl-4-methyl-benzene, 1-ethynyl-4-trifluoromethyl-benzene and 2-ethynylpyridine were purchased from Aldrich and were used without further purification. 1-Bromo-3-ethynylbenzene was obtained by a previously described method. ¹ DMF, DMAC and Et₃N were distilled over activated molecular sieves.

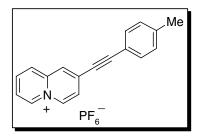
Sonogashira Reactions on Quinolizinum Salts 5a-d. General Procedure for the Synthesis of Substituted Quinolizinium Cations 1-4.

Method A. A flame-dried vial was charged under argon with 50 mg (0.173 mmol) of the corresponding bromoquinolizinium salt, 10 mol % CuI (3.3 mg, 0.0173 mmol) and 5 mol % $PdCl_2(PPh_3)_2$ (6.9 mg, 0.0087 mmol) in dry DMF (2.5 mL). Then the corresponding acetylene (0.208 mmol) and Et_3N (0.259 mmol, 45 μL) were added. After heating at 60 °C for 14 h, the solution was filtered through a small pad of celite and washed with methanol (5 mL). The solution was concentrated, treated with a saturated solution of $NaHCO_3$ (20 mL) and extracted with EtOAc (15 mL). The organic phase was extracted with H_2O (2 x 10 mL), the aqueous

1

¹ Wettergren, J.; Minidis, A. B. E. Tetrahedron Lett. 2003, 16, 4467.

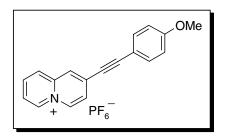
phase was treated with a saturated solution of NH₄PF₆ and the resulting phase was extracted with CH₂Cl₂ (3 x 15 mL). The organic phase was dried over Na₂SO₄, the solvent evaporated under reduced pressure and the and the product isolated by column chromatography on silica gel using CH₂Cl₂/MeOH (9.6:0.4) as eluent.


Method B. A flame-dried vial was charged under argon with 50 mg (0.173 mmol) of the corresponding bromoquinolizinium salt, 10 mol % CuI (3.3 mg, 0.0173 mmol) and 5 mol % $PdCl_2(PPh_3)_2$ (6.9 mg, 0.0087 mmol) in dry DMF (2.5 mL). Then 1.2 equiv.of the corresponding acetylene (0.208 mmol) and 1.5 equiv. of Et_3N (0.259 mmol, 45 μL) were added. After heating at 60 °C for 14 h, the solution was filtered through a small pad of celite and washed with methanol (5 mL). The solution was concentrated, treated with H_2O (20 mL) and extracted with CH_2Cl_2 (3 x 15 mL). The organic phase was dried over Na_2SO_4 , the solvent evaporated under reduced pressure and the and the product isolated by column chromatography on silica gel using $CH_2Cl_2/MeOH$ (9.6:0.4) as eluent.

2-(Triisopropylsilanylethynyl)quinolizinium bromide (2a).

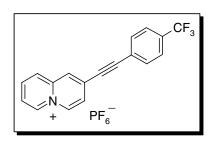
Following the general procedure B, from $\bf 5b$ and triisopropylsilylacetylene (47 μ l), were obtained 55.6 mg (82%) of $\bf 2a$ as a yellow solid: mp 206-208 °C (CH₂Cl₂:Et₂O); IR (NaCl) 2944, 1866, 2154, 1642, 1450, 1402, 1152, 883 cm⁻¹; ¹H

RMN (200 MHz, Acetone- d_6): δ 10.22 (d, 1H, J = 6.4 Hz), 10.19 (d, 1H, J = 7.2 Hz), 8.22 (s, 1H), 8.72 (d, 1H, J = 8.5 Hz), 8.51 (ddd, 1H, J = 8.5, 7.3, 1.0 Hz), 8.18 (ddd, 1H, J = 8.2, 6.9, 1.3 Hz), 8.09 (dd, 1H, J = 7.2, 1.8 Hz), 1.21-1.14 (m, 21H); ¹³C RMN (50 MHz, Acetone- d_6): δ 143.7, 138.6, 138.3, 137.9, 131.4, 130.3, 127.9, 125.8, 124.9, 104.1, 103.3, 18.9, 11.8. MS (ESI⁺) m/z 310 (M⁺, 100). Anal. Calcd for C₂₀H₂₈BrNSi: C, 61.53; H, 7.23; N, 3.59. Found: C, 61.69; H, 7.41; N, 3.60.


2-(4-Methylophenyllethynyl)quinolizinium hexafluorophosphate (2b).

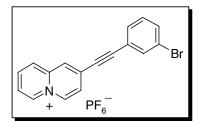
Following the general procedure A, from **5b** and 1-ethynyl-4-methyl-benzene (24.2 mg), were obtained 49.4 mg (74%) of **2b** as a white solid: mp 205-207 °C (CH₂Cl₂:Et₂O); IR (KBr) 2209, 1646, 1451, 1407, 1147, 837 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 9.42 (d, 2H, J = 7.0 Hz), 8.74 (s,

1H), 8.63 (d, 1H, J = 8.4 Hz), 8.51 (t, 1H, J = 7.3 Hz), 8.21-8.19 (m, 2H), 7.59 (d, 2H, J = 8.1 Hz), 7.35 (d, 2H, J = 7.9 Hz), 2.40 (s, 3H); ¹³C RMN (75 MHz, Acetone- d_6): δ 143.5, 141.8, 138.3, 137.6, 137.3, 132.7, 132.2, 130.1, 129.1, 127.7, 125.7, 124.7, 118.2, 101.0, 85.7, 21.6. MS (ESI⁺) m/z 244 (M⁺, 100). Anal. Calcd for C₁₈H₁₄F₆NP: C, 55.54; H, 3.63; N, 3.60. Found: C, 55.60; H, 3.67; N, 3.39.


2-(4-Methoxyphenylethynyl)quinolizinium hexafluorophosphate (2c).

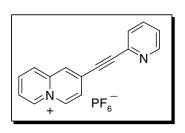
Following the general procedure A, from **5b** and 1-ethynyl-4-methoxy-benzene (27 μ l), were obtained 54.9 mg (78%) of **2c** as a yellow solid: mp 195-196 °C (CH₂Cl₂:Et₂O); IR (KBr) 3118, 2854, 2202, 1647, 1599, 1255, 842 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 9.37 (d, 2H, J = 7.0 Hz), 8.70 (s, 1H), 8.60 (d, 1H, J =

8.4 Hz), 8.49 (td, 1H, J = 7.9, 0.9 Hz), 8.19-8.15 (m, 2H), 7.66 (d, 2H, J = 8.8 Hz), 7.07 (d, 2H, J = 8.9 Hz), 3.89 (s, 3H); ¹³C RMN (75 MHz, Acetone- d_6): δ 162.7, 144.0, 138.6, 138.0, 137.6, 135.1, 133.0, 129.0, 128.0, 126.0, 124.9, 115.5, 113.4, 102.0, 85.8, 55.9. MS (ESI⁺) m/z 260 (M⁺, 100). Anal. Calcd for C₁₈H₁₄F₆NOP: C, 53.35; H, 3.48; N, 3.46. Found: C, 53.46; H, 3.57; N, 3.68.


2-(4-Trifluoromethylphenylethynyl)-quinolizinium hexafluorophosphate (2d).

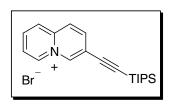
Following the general procedure A, from **5b** and 1-ethynyl-4-trifluoromethyl-benzene (34 μ l), were obtained 52.6 mg (69%) of **2d** as a white solid: mp 213-214 °C (CH₂Cl₂:Et₂O); IR (KBr) 3109, 2226, 1643, 1409, 1327, 1132, 1067, 838 cm⁻¹; ¹H RMN (300 MHz, Acetone-*d*₆): δ 9.44 (d, 2H, J = 7.0 Hz), 8.85 (s, 1H), 8.66 (d, 1H, J = 8.6

Hz), 8.56 (td, 1H, J = 7.1, 0.9 Hz), 8.28-8.22 (m, 2H), 7.94 (d, 2H, J = 8.2 Hz), 7.87 (d, 2H, J = 8.2 Hz); ¹³C RMN (75 MHz, Acetone- d_6): δ 144.0, 139.1, 138.4, 137.9, 133.8, 132.2 (c, J = 32.3 Hz), 131.6, 130.5, 128.4, 126.7 (c, J = 2.9 Hz), 126.1, 125.8, 125.6, 124.7 (c, J = 253.7 Hz), 98.3, 88.0. MS (ESI⁺) m/z 298 (M⁺, 100). Anal. Calcd for C₁₈H₁₁F₉NP: C, 48.78; H, 2.50; N, 3.16. Found: C, 48.89; H, 2.31; N, 3.25.


2-(3-Bromophenylethynyl)quinolizinium hexafluorophosphate (2e).

Following the general procedure A, from **5b** and 1-bromo-3-ethynyl-benzene (37.6 mg), were obtained 55.7 mg (71%) of **2e** as a white solid: mp 220-222 °C (CH₂Cl₂:Et₂O); IR (KBr) 3111, 2234, 2218, 1643, 1451, 1409, 1151, 844 cm⁻¹; ¹H RMN (200 MHz, Acetone- d_6): δ

9.41 (d, 2H, J = 7.2 Hz), 8.79 (s, 1H), 8.64 (d, 1H, J = 8.2 Hz), 8.53 (td, 1H, J = 8.0, 0.8 Hz), 8.25-8.18 (m, 2H), 7.88 (t, 1H, J = 1.8 Hz), 7.77-7.69 (m, 2H), 7.48 (t, 1H, J = 7.7 Hz); ¹³C RMN (50 MHz, Acetone- d_6): δ 143.9, 139.0, 138.2, 137.8, 135.5, 134.5, 132.0, 131.8, 130.2, 128.3, 126.1, 125.4, 123.9, 122.9, 98.5, 87.2. MS (ESI⁺) m/z 310 (M⁺+1, 98), 308 (M⁺-1, 100). Anal. Calcd for C₁₇H₁₁BrF₆NP: C, 44.96; H, 2.44; N, 3.08. Found: C, 44.80; H, 2.35; N, 3.33.


2-(Pyridin-2-ylethynyl)quinolizinium hexafluorophosphate (2f).

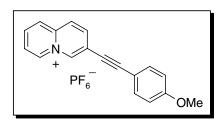
Following the general procedure A, from **5b** and 2-ethynylpyridine (21.4 mg), were obtained 28.2 mg (43%) of **2f** as a white solid: mp 219-222 °C (CH₂Cl₂:Et₂O); IR (KBr) 3111, 2213, 1643, 1618, 1449, 1408, 831 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 9.44 (d, 2H, J = 7.1 Hz), 8.86 (s, 1H), 8.72 (d, 1H, J = 4.8 Hz), 8.67 (d, 1H, J = 8.6 Hz), 8.56 (ddd, 1H, J =

8.6, 8.3, 1.1 Hz), 8.28-8.22 (m, 2H), 7.95 (td, 1H, J = 7.7, 1.7 Hz), 7.80 (dt, 1H, J = 7.7, 1.1 Hz), 7.53 (ddd, 1H, J = 7.7, 6.0, 1.1 Hz); ¹³C RMN (75 MHz, Acetone- d_6): δ 151.3, 143.7, 141.9, 138.9, 138.1, 137.7, 137.5, 131.3, 130.5, 129.1, 128.1, 125.9, 125.5, 125.4, 98.8, 84.1. MS (ESI⁺) m/z 231 (M⁺, 100). Anal. Calcd for C₁₆H₁₁F₆N₂P: C, 51.08; H, 2.95; N, 7.45. Found: C, 51.32; H, 2.71; N, 7.70.

3-(Triisopropylsilanylethynyl)quinolizinium hexafluorophosphate (3a).

Following the general procedure B, from 5c and triisopropylsilylacetylene (47 μ l), were obtained 54.2 mg (80%) of 3a as a yellow solid: mp 70-72 °C (CH₂Cl₂:Et₂O); IR (NaCl) 2944, 2865, 2163, 1626, 1463, 1398, 1222, 996, 882 cm⁻¹; ¹H

RMN (300 MHz, Acetone- d_6): δ 10.03 (s, 1H), 9.81 (d, 1H, J = 6.6 Hz), 8.76 (t, 2H, J = 9.5 Hz), 8.55 (ddd, 1H, J = 8.5, 7.3, 1.1 Hz), 8.45 (dd, 1H, J = 9.0, 1.7 Hz), 8.26 (t, 1H, J = 6.5 Hz), 1.21-1.15 (m, 21H); ¹³C RMN (75 MHz, Acetone- d_6): δ 143.0, 140.2, 138.9, 138.6, 137.7,


128.2, 128.1, 125.2, 120.2, 100.8, 100.4, 18.9, 11.8. MS (ESI⁺) *m/z* 310 (M⁺, 100). Anal. Calcd for C₂₀H₂₈BrNSi: C, 61.53; H, 7.23; N, 3.59. Found: C, 61.42; H, 7.51; N, 3.43.

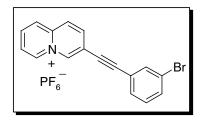
3-p-Tolylethynyl-quinolizinium hexafluorophosphate (3b).

Following the general procedure A, from 5c and 1-ethynyl-4-methyl-benzene (24.2 mg), were obtained 51.0 mg (76%) of 3b as a white solid: mp 207-209 °C (CH₂Cl₂:Et₂O); IR (KBr) 2924, 2219, 1627, 1517, 1401, 831 cm⁻¹; ¹H RMN (200 MHz, Acetone- d_6): δ 9.67 (s.

1H), 9.41 (d, 1H, J = 6.7 Hz), 8.71-8.66 (m, 2H), 8.53 (ddd, 2H, J = 9.5, 7.9, 1.0 Hz), 8.28 (t, 1H, J = 6.9 Hz), 7.55 (d, 2H, J = 8.2 Hz), 7.32 (d, 2H, J = 8.0 Hz), 2.40 (s, 3H); ¹³C RMN (75 MHz, Acetone- d_6): δ 142.9, 141.6, 139.4, 139.1, 138.6, 137.5, 132.8, 130.4, 128.3, 128.2, 125.8, 121.5, 118.8, 97.9, 83.1, 21.5. MS (ESI⁺) m/z 244 (M⁺, 100). Anal. Calcd for C₁₈H₁₄F₆NP: C, 55.54; H, 3.63; N, 3.60. Found: C, 55.25; H, 3.84; N, 3.54.

3-(4-Methoxyphenylethynyl)quinolizinium hexafluorophosphate (3c).

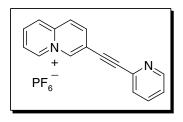
Following the general procedure A, from 5c and 1-ethynyl-4-methoxy-benzene (27 μ l), were obtained 54.2 mg (77%) of 3c as a yellow solid: mp 197-198 °C (CH₂Cl₂:Et₂O); IR (KBr) 3106, 2853, 2210, 1716, 1629, 1599, 1516, 1254, 842 cm⁻¹; ¹H RMN (300 MHz,


Acetone- d_6): δ 9.64 (s, 1H), 9.41 (d, 1H, J = 6.8 Hz), 8.70 (d, 1H, J = 5.3 Hz), 8.67 (d, 1H, J = 5.3 Hz) 8.56-8.48 (m, 2H), 8.27 (t, 1H, J = 7.0 Hz), 7.61 (d, 2H, J = 9.0 Hz), 7.06 (d, 2H, J = 9.0 Hz), 3.88 (s, 3H); 13 C RMN (75 MHz, Acetone- d_6): δ 162.2, 142.8, 139.1, 138.4, 137.5, 134.6, 128.3, 128.2, 125.7, 121.9, 115.4, 113.6, 98.2, 94.0, 82.6, 55.9. MS (ESI⁺) m/z 260 (M⁺, 100). Anal. Calcd for $C_{18}H_{14}F_6NOP$: C, 55.35; H, 3.48; N, 3.46. Found: C, 55.12; H, 3.63; N, 3.19.

3-(4-Trifluoromethylphenylethynyl)quinolizinium hexafluorophosphate (3d).

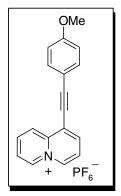
Following the general procedure A, from 5c and 1-ethynyl-4-trifluoromethyl-benzene (34 μ l), were obtained 44.6 mg (58%) of 3d as a white solid: mp 202-204 °C (CH₂Cl₂:Et₂O); IR (KBr) 3121, 2223, 1629, 1404, 1327,

1130, 1067, 839 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 9.74 (s, 1H), 9.41 (d, 1H, J = 6.8 Hz), 8.71 (d, 2H, J = 9.0 Hz), 8.59-8.54 (m, 2H), 8.29 (t, 1H, J = 7.0 Hz), 7.91 (d, 2H, J = 8.2 Hz), 7.85 (d, 2H, J = 8.4 Hz); ¹³C RMN (75 MHz, Acetone- d_6): δ 143.3, 140.1, 139.1, 139.0, 137.8, 133.5, 132.8 (c, J = 32.3 Hz), 128.4, 126.7 (c, J = 4.4 Hz), 126.0, 125.9, 124.8 (c, J = 256.6 Hz), 122.9, 120.6, 95.3, 85.6. MS (ESI⁺) m/z 298 (M⁺, 100). Anal. Calcd for C₁₈H₁₁F₉NP: C, 48.78; H, 2.50; N, 3.16. Found: C, 48.53; H, 2.69; N, 3.15.


3-(3-Bromophenylethynyl)quinolizinium hexafluorophosphate (3e).

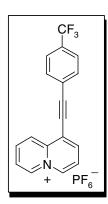
Following the general procedure A, from **5c** and 1-bromo-3-ethynyl-benzene (37.6 mg), were obtained 54.9 mg (70%) of **3e** as a white solid: mp 224-226 °C (CH₂Cl₂:Et₂O); IR (KBr) 3110, 2230, 1627, 1511, 1399, 844 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 9.71 (s, 1H), 9.41 (d, 1H, J = 6.8

Hz), 8.71 (d, 2H, J = 9.0 Hz), 8.56 (td, 2H, J = 8.4, 1.1 Hz), 8.29 (t, 1H, J = 6.2 Hz), 7.85 (t, 1H, J = 1.5 Hz), 7.73 (ddd, 1H, J = 8.1, 1.8, 0.9 Hz), 7.68 (dt, 1H, J = 7.9, 1.3 Hz), 7.48 (t, 1H, J = 8.1, Hz); ¹³C RMN (75 MHz, Acetone- d_6): δ 143.0, 139.7, 138.8, 138.7, 137.5, 135.0, 133.9, 131.5, 131.4, 128.1, 125.7, 123.8, 122.7, 120.5, 95.1, 84.6. MS (ESI⁺) m/z 310 (M⁺+1, 99), 308 (M⁺-1, 100). Anal. Calcd for $C_{17}H_{11}BrF_6NP$: C, 44.96; H, 2.44; N, 3.08. Found: C, 44.72; H, 2.73; N, 3.03.


3-(Pyridin-2-ylethynyl)quinolizinium hexafluorophosphate (3f).

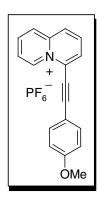
Following the general procedure A, from **5c** and 2-ethynylpyridine (21.4 mg), were obtained 32.7 mg (50%) of **3f** as a light brown solid: mp 220-222 °C (Acetone:Et₂O); IR (KBr) 2925, 1628, 1431, 1386, 1841 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 9.77 (s, 1H), 9.45 (d, 1H, J = 6.8 Hz), 8.74-8.72

(m, 3H), 8.61-8.55 (m, 2H), 8.31 (t, 1H, J = 7.1 Hz),7.94 (td, 1H, J = 7.8, 1.7 Hz), 7.76 (dt, 1H, J = 7.9, 0.9 Hz), 7.52 (ddd, 1H, J = 7.7, 6.0, 1.3 Hz); ¹³C RMN (75 MHz, Acetone- d_6): δ 151.3, 143.2, 142.1, 140.3, 139.0, 138.9, 137.7, 137.5, 128.9, 128.3, 125.8, 125.3, 120.4, 96.1, 81.9. MS (ESI⁺) m/z 231 (M⁺, 100). Anal. Calcd for C₁₆H₁₁F₆N₂P: C, 51.08; H, 2.95; N, 7.45. Found: C, 49.92; H, 3.09; N, 7.36.


1-(4-Methoxy-phenylethynyl)-quinolizinium hexafluorophosphate (1a).

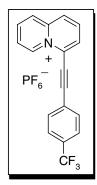
Following the general procedure A, from **5a** and 1-ethynyl-4-methoxybenzene (27 µl), were obtained 33.1 mg (47%) of **1a** as a yellow solid: mp 235-237 °C; IR (KBr) 3123, 2205, 1638, 1606, 1257, 837, 557 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 9.51 (d, 1H, J = 6.8 Hz), 9.39 (d, 1H, J = 7.0 Hz), 9.11 (d, 1H, J = 8.6 Hz), 8.66-8.61 (m, 2H), 8.29 (td, 1H, J = 6.8, 1.3 Hz), 8.21 (t, 1H, J = 7.2 Hz), 7.74 (d, 2H, J = 9.0 Hz), 7.08 (d, 2H, J = 9.0 Hz), 3.89 (s, 3H); ¹³C RMN (75 MHz, Acetone- d_6): δ 162.4, 144.2, 139.9, 139.6, 138.9, 137.0, 134.8, 126.8, 125.7, 124.5, 123.1,

115.5, 113.6, 102.2, 81.6, 55.9. MS (ESI $^+$) m/z 260 (M $^+$, 100). Anal. Calcd for C₁₈H₁₄F₆NOP: C, 53.53; H, 3.48; N, 3.46. Found: C, 53.40; H, 3.56; N, 3.71.


1-(4-Trifluoromethyl-phenylethynyl)-quinolizinium hexafluorophosphate (1b).

Following the general procedure A, from **5a** and 1-ethynyl-4-trifluoromethylbenzene (34 µl), afforded 30.7 mg (40%) of **1b** as a white solid: mp 197-199 °C; IR (KBr) 3121, 2926, 2224, 1636, 1410, 1326, 1133, 834, 558 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 9.57 (d, 1H, J = 6.8 Hz), 9.49 (d, 1H, J = 7.0 Hz), 9.18 (d, 1H, J = 8.6 Hz), 8.76 (d, 1H, J = 7.5 Hz), 8.68 (td, 1H, J = 7.5, 1.1 Hz), 8.35 (t, 1H, J = 6.0 Hz), 8.27 (t, 1H, J = 7.1 Hz), 8.04 (d, 2H, J = 8.1 Hz), 7.89 (d, 2H, J = 8.2 Hz); ¹³C RMN (75 MHz, Acetone- d_6): δ 144.0, 140.9, 139.7, 138.8, 137.8, 133.4,

131.7 (c, J = 32.1 Hz), 126.5, 126.4, (c, J = 4.4 Hz), 125.8, 125.7, 124.2, 122.8, 121.7, 99.0, 84.4. MS (ESI⁺) m/z 298 (M⁺, 100). Anal. Calcd for $C_{18}H_{11}F_{9}NP$: C, 48.78; H, 2.50; N, 3.16. Found: C, 48.84; H, 2.73; N, 3.28.


4-(4-Methoxy-phenylethynyl)-quinolizinium hexafluorophosphate (4a).

Following the general procedure A, from **5d** and 1-ethynyl-4-methoxybenzene (27 µl), stirring at room temperature for 14 h, afforded 43.0 mg (61%) of **4a** as a yellow solid: mp 220-222 °C; IR (KBr) 3119, 2201, 1601, 1512, 1258, 839, 558 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 10.08 (d, 1H, J = 7.0 Hz), 8.77 (d, 1H, J = 8.4 Hz), 8.70-8.65 (m, 1H), 8.58 (ddd, 1H, J = 9.7, 7.3, 1.1 Hz), 8.53-8.47 (m, 2H), 8.33 (td, 1H, J = 7.0, 1.5 Hz), 7.84

(d, 2H, J = 9.0 Hz), 7.13 (d, 2H, J = 9.0 Hz), 3.91 (s, 3H); ¹³C RMN (75 MHz, Acetone- d_6): δ 163.2, 144.7, 138.6, 136.9, 135.7, 135.3, 130.4, 129.4, 127.9, 126.0, 119.6, 115.7, 112.3, 107.7, 79.4, 56.1. MS (ESI⁺) m/z 260 (M⁺, 100). Anal. Calcd for C₁₈H₁₄F₆NOP: C, 53.35; H, 3.48; N, 3.46. Found: C, 53.60; H, 3.59; N, 3.27.

4-(4-Trifluoromethyl-phenylethynyl)-quinolizinium hexafluorophosphate (4b).

Following the general procedure A, from **5d** and 1-ethynyl-4-trifluoromethyl-benzene (34 μ l), tirring at room temperature for 14 h, afforded 38.4 mg (50%) de **4b** as a white solid: mp 213-215 °C; IR (KBr) 3121, 2927, 222, 1641, 1618, 1411, 1329, 1129, 1068, 837, 558 cm⁻¹; ¹H RMN (300 MHz, Acetone- d_6): δ 10.16 (dd, 1H, J = 7.0, 0.9 Hz), 8.82 (d, 1H, J = 8.6 Hz), 8.77 (d, 1H, J = 8.6 Hz), 8.66-8.61 (m, 2H), 8.54 (t, 1H, J = 7.5 Hz), 8.36 (td, 1H, J = 7.1, 1.6 Hz), 8.13 (d, 2H, J = 8.1 Hz), 7.93 (d, 2H, J = 8.1 Hz); ¹³C RMN (75 MHz, Acetone- d_6): δ 144.8, 139.1, 136.8, 136.0,

134.0, 132.7 (c, J = 32.3 Hz), 130.6, 129.6, 129.3, 129.1, 126.7 (c, J = 3.7 Hz), 126.3, 124.9, 124.7 (c, J = 267.5 Hz), 104.0, 81.7. MS (ESI⁺) m/z 298 (M⁺, 100). Anal. Calcd for $C_{18}H_{11}F_{9}NP$: C, 48.78; H, 2.50; N, 3.16. Found: C, 48.51; H, 2.66; N, 3.10.