Generation of Synthetic Equivalents of Benzdiynes
from Benzobisoxadisiloles

Ya-Li Chen, Jiang-Qin Sun, Xin Wei, Wai-Yeung Wong and Albert W. M. Lee*

Department of Chemistry and Centre for Advanced Luminescence Materials,
Hong Kong Baptist University, Kowloon Tong, Hong Kong, China

alee@hkbu.edu.hk

Supporting Information

Contents
General Information S3
FIGURE 1. X-ray Structure of 14 S4
FIGURE 2. X-ray Structures of 19a, 19d, 20b, 20c and 22 S4
FIGURE 3. X-ray Structure of 25a (syn) S4
FIGURE 4. X-ray Structure of 34b S4
1H NMR spectrum of 12b S5
13C NMR spectrum of 12b S6
1H NMR spectrum of 13 S7
13C NMR spectrum of 13 S8
1H NMR spectrum of 14 S9
13C NMR spectrum of 14 S10
1H NMR spectrum of 15 S11
13C NMR spectrum of 15 S12
1H NMR spectrum of 16 S13
13C NMR spectrum of 16 S14
1H NMR spectrum of 19a S15
13C NMR spectrum of 19a S16
1H NMR spectrum of 19b S17
13C NMR spectrum of 19b S18
1H NMR spectrum of 19c S19
13C NMR spectrum of 19c S20
1H NMR spectrum of 19d S21
13C NMR spectrum of 19d S22
1H NMR spectrum of 19e
13C NMR spectrum of 19e
1H NMR spectrum of 20a
13C NMR spectrum of 20a
1H NMR spectrum of 20b
13C NMR spectrum of 20b
1H NMR spectrum of 20c
13C NMR spectrum of 20c
1H NMR spectrum of 20d
13C NMR spectrum of 20d
1H NMR spectrum of 20e
13C NMR spectrum of 20e
1H NMR spectrum of 21
13C NMR spectrum of 21
1H NMR spectrum of 22
13C NMR spectrum of 22
1H NMR spectrum of 25a/26a
13C NMR spectrum of 25a/26a
1H NMR spectrum of 25b/26b
13C NMR spectrum of 25b/26b
1H NMR spectrum of 27
13C NMR spectrum of 27
1H NMR spectrum of 28
13C NMR spectrum of 28
1H NMR spectrum of 31
13C NMR spectrum of 31
1H NMR spectrum of 33a
13C NMR spectrum of 33a
1H NMR spectrum of 33b
13C NMR spectrum of 33b
1H NMR spectrum of 33c
13C NMR spectrum of 33c
1H NMR spectrum of 34b
13C NMR spectrum of 34b
1H NMR spectrum of 35b
13C NMR spectrum of 35b
1H NMR spectrum of 35c
13C NMR spectrum of 35c
General. NMR spectra were recorded on a Varian INOVA-400FT NMR spectrometer (400 MHz for 1H and 100.6 MHz for 13C) or a JEOL EX270 NMR spectrometer (270 MHz for 1H and 67.8 MHz for 13C) with CDCl$_3$ as the solvent. Chemical shifts are reported as parts per million (ppm) in δ unit in the scale relative to the resonance of CDCl$_3$ (7.26 ppm in the 1H, 77.00 ppm for the central line of the triplet in the 13C modes, respectively). Coupling constants (J) are reported in Hz. IR spectra were determined on a Nicolet Magna-IR 550 spectrometer, date were given in cm$^{-1}$. Low resolution mass spectra (LRMS) were obtained on a Finnigan MAT SSQ-710 spectrometer in FAB (positive ion) mode or E.I. mode and reported as m/z. High resolution mass spectra (HRMS) was recorded on a Applied Biosystem QSTAR Pulsar/LC/MS/MS, ESI-QTOF instrument. Melting points are uncorrected. Anhydrous magnesium sulfate was the drying agent throughout, and the silica gel for chromatography was 230-400 mesh. Element analyses were performed at the Shanghai Institute of Organic Chemistry, Chinese Academy of Science and Shanxi University. X-ray crystallographic data were collected with a Bruker AXS SMART 1000 CCD area-detector diffractometer with graphite-monochromated Mo-Kα radiation ($\lambda=0.71073$ Å) at 293 K. The collected frames were processed with proprietary software SAINT and an absorption correction was applied (SADABS) to the collected reflections. The structures of these molecules were solved by direct methods and expanded by standard difference Fourier syntheses using the software SHELXTL.
FIGURE 1. X-ray Structure of 14

FIGURE 2. X-ray Structures of 19a, 19d, 20b, 20c and 22

FIGURE 3. X-ray Structure of 25a (syn)

FIGURE 4. X-ray Structure of 34b
1H NMR spectrum of 12b
13C NMR spectrum of 12b
1H NMR spectrum of 13
13C spectrum of 13
1H NMR spectrum of 14
13C NMR spectrum of 14
1H NMR spectrum of 15
\[^{13}\text{C}\] NMR spectrum of 15
1H NMR spectrum of 16
13C NMR spectrum of 16
1H NMR spectrum of 19a
13C NMR spectrum of 19a
1H NMR spectrum of 19b
13C NMR spectrum of 19b
1H NMR spectrum of 19c
13C NMR spectrum of 19c
1H NMR spectrum of 19d
\(^{13}\)C NMR spectrum of 19d
1H NMR spectrum of 19e
13C NMR spectrum of 19e
1H NMR spectrum of 20a
13C NMR spectrum of 20a
1H NMR spectrum of 20b
13C NMR spectrum of 20b
1H NMR spectrum of 20c
13C NMR spectrum of 20c
1H NMR spectrum of 20d
13C NMR spectrum of $20d$
1H NMR spectrum of 20e
13C NMR spectrum of 20e
1H NMR spectrum of 21

$\text{Ar} = \rho$-CH$_2$O-C$_6$H$_4$
13C NMR spectrum of 21
1H NMR spectrum of 22
13C NMR spectrum of 22
1H NMR spectrum of 25a+26a
13C NMR spectrum of 25a+26a
The image contains an NMR spectrum of compounds 25b and 26b. The spectrum shows the chemical shifts and multiplicities for these compounds. The compounds are marked as (syn) for 25b and (anti) for 26b.
Ablert W. M. Lee et al. - Supporting Information

13C NMR spectrum of 25b+26b

S42
1H NMR spectrum of 27
13C NMR spectrum of 27
1H NMR spectrum of 28
13C NMR spectrum of 28
1H NMR spectrum of 31
13C NMR spectrum of 31
1H NMR spectrum of 33a
13C NMR spectrum of 33a
1H NMR spectrum of 33b
13C NMR spectrum of 33b
1H NMR spectrum of 33c
13C NMR spectrum of 33c
1H NMR spectrum of 34b
13C NMR spectrum of 34b
1H NMR of 35b
13C NMR spectrum of 35b
1H NMR spectrum of 35c
13C NMR spectrum of 35c
1H NMR spectrum of 37b+38b
13C NMR spectrum of $^{37b} + ^{38b}$