Supplemented material No.1: The flowchart of the AIA calculation

Input of the overlapping GC/MS signal

\[X_{\text{m:n}} = [x_1, x_2, \cdots, x_m]^T = \left[x_{11}, x_{12}, \cdots, x_{1n} \right] \]

\[\left[x_{21}, x_{22}, \cdots, x_{2n} \right] \]

\[\vdots \]

\[x_{m1}, x_{m2}, \cdots, x_{mn} \]

\(m \): scan number (sample number in retention time); \(n \): number of mass to charge

Set of the initial number of ICs

\(d = 1 \)

Calculate ICs (spectral information) from \(X_{\text{m:n}} \)

Using the program of the ICA procedure, which is available from the website http://mole.imm.dtu.dk/toolbox/ica/mf/icaMF.zip, calculate the ICs from the input signal, \(X_{\text{m:n}} \), with the preset number of ICs, \(d \). The calculated ICs are stored in \(\hat{S}_{d:n} \).

\[(X_{\text{m:n}}, d) \xrightarrow{\text{ICA}} \hat{S}_{d:n} = [\hat{s}_1, \hat{s}_2, \cdots, \hat{s}_d]^T = \left[\hat{s}_{11}, \hat{s}_{12}, \cdots, \hat{s}_{1n} \right] \]

\[\hat{s}_{21}, \hat{s}_{22}, \cdots, \hat{s}_{2n} \]

\[\vdots \]

\[\hat{s}_{d1}, \hat{s}_{d2}, \cdots, \hat{s}_{dn} \]

Calculate the chromatographic profiles of the ICs

Taking \(\hat{S}_{d:n} \) as antibodies (standard information) and \(x_j \) (the measured MS at retention time \(j \)) as antigen (overlapping MS to be resolved), using the program of IAA procedure (the supplemented material No.2), calculate the chromatographic intensity, \(c_j = \{c_{j,d}\} \), of the \(d \)th IC at the retention time \(j \). With all the \(c_j \) \((j = 1 \cdots m)\) s at every retention time, the chromatographic profile can be obtained.

\[\hat{C}_{\text{m:d}} = (\hat{c}_1, \hat{c}_2, \cdots, \hat{c}_m)^T = \left[\hat{c}_{11}, \hat{c}_{12}, \cdots, \hat{c}_{1d} \right] \]

\[\hat{c}_{21}, \hat{c}_{22}, \cdots, \hat{c}_{2d} \]

\[\vdots \]

\[\hat{c}_{m1}, \hat{c}_{m2}, \cdots, \hat{c}_{md} \]

Evaluation of the assumed number of ICs

\[X^{\text{rec}} = \hat{C} \hat{S}, \quad RRSSQ = \left(\sum_{i=1}^m \sum_{j=1}^n (x_{ij} - x_{ij}^{\text{rec}})^2 \right)^{1/2} \]

Minimum of \(RRSSQ \)?

Output of the resolution results

\(\hat{S}_{d:n} = [s_1, s_2, \cdots, s_d]^T, \hat{C}_{\text{m:d}} = [c_1, c_2, \cdots, c_m]^T, X^{\text{rec}} = \hat{C}_{\text{m:d}} \hat{S}_{d:n} \)
Supplemented material No.2: Program of the IA procedure

function [h, resi] = IA(antigen, antibody)

% antigen – the overlapping signal, in which each row is an overlapping spectrum.
% antibody – the standard information of the components, which can be obtained from
% the measurement of the reference substances, the theoretical simulations,
% or extracted by means of ICA, etc.
% h – affinity between the antibody and the antigen, in an overlapping signal,
% it corresponds to the concentrations of the multiple components.
% resi – residue between the extracted information and the antigen.

[row,col]=size(antigen);
[row1,col1]=size(antibody);
if col~=col1
 error('error');
end

feedback=zeros(1,col);
h=zeros(1,row1);
q=antibody*antibody';
for i=1:row1
 T(i,:)=antibody(i,:)/q(i,i);
end;
CN=row1;
clear row col col1 row1 q

dh=(antigen-feedback)*T';
number=0;residu=sum(dh*dh');
resi=antigen-feedback;
while sum(dh*dh')>1e-5 & number<2000
 h=h+dh/10;
 for i=1:CN
 if h(i)<0 h(i)=0; end
 end
 feedback=h*antibody;
dh=(antigen-feedback)*T';
number=number+1;
residu=sum(dh*dh');
resi=antigen-feedback;
clear mm pos
end