SUPPLEMENTAL INFORMATION

Pd Catalyzed Cross-Coupling of Baylis-Hillman Acetate Adducts with

Bis(Pinacolato)diboron: An Efficient Route to Functionalized Allyl Borates

George W. Kabalka, Bollu Venkataiah and Gang Dong

Table of Contents ... S1
General experimental procedure for preparation of allyltrifluoroborate salts S2
Spectroscopic data of 4a .. S2
Spectroscopic data of 4b, 4c, and 4d .. S3
Spectroscopic data of 4e and 4f ... S4
Spectroscopic data of 4g and 4i ... S5
Experimental procedure for reaction of 4a and nitrobenzaldehyde S6
Experimental procedure for reaction of 3 and nitrobenzaldehyde S6
Spectroscopic data of 5a .. S6
Spectroscopic data of 5h .. S7
Spectra (1H, 13C and 19F) of 4a ... S8-S10
Spectra (1H, 13C and 19F) of 4b ... S11-S13
Spectra (1H, 13C and 19F) of 4c ... S14-S16
Spectra (1H, 13C and 19F) of 4d ... S17-S19
Spectra (1H, 13C and 19F) of 4e ... S20-S22
Spectra (1H, 13C and 19F) of 4f ... S23-S25
Spectra (1H, 13C and 19F) of 4g ... S26-S28
Spectra (1H, 13C and 19F) of 4i ... S29-S31
Spectra (1H and 13C) of 5a .. S32-S33
Spectra (1H and 13C) of 5h .. S34-S35

S1
General procedure for the preparation of functionalized allyltrifluoroborate potassium salts: To a mixture of Baylis-Hillman acetate adduct 1 (1 mmol) and bis(pinacolato)diboron 2 (1.1 mmol) in 4 mL of THF, was added Pd catalyst (Pd(OAc)$_2$, 5 mol % or Pd$_2$(dba)$_3$, 3 mol %) and the mixture stirred at 50 °C. After completion of the reaction (TLC), the mixture was treated with excess aqueous KHF$_2$ (6 mmol) and allowed to stir for 20 min at room temperature. All solvents were removed under reduced pressure using a rotary evaporator and the resultant solid was washed with acetone (4 X 10 mL), the combined acetone fractions concentrated under reduced pressure, and the residue washed with Et$_2$O (2 X 5 mL) to obtain the final allyltrifluoroborate salt as a solid.

BF_3K

OMe

Cl

4a

BF_3K

OMe

4b

1H NMR (d$_6$ DMSO) δ 7.61 (d, $J = 8$ Hz, 2H), 7.32-7.22 (m, 3H), 7.05 (s, 1H), 3.63 (s, 3H), 1.55 (m, 2H); 13C NMR (d$_6$ DMSO) δ 170.6, 138.2, 137.0, 130.2, 129.5, 127.8, 126.9, 51.2; 19F (d$_6$ DMSO) δ −134.388. Anal. Caolcd. For C$_{11}$H$_{11}$BF$_3$KO$_2$: C, 46.83; H, 3.98. Found: C, 46.94; H, 3.82.
\(^1\)H NMR (d\(_6\) DMSO) \(\delta\) 7.65 (d, \(J = 8\) Hz, 2H), 7.36 (d, \(J = 8\) Hz, 2H), 7.03 (s, 1H), 3.64 (s, 3H), 1.55 (brs, 2H); \(^{13}\)C NMR (d\(_6\) DMSO) \(\delta\) 170.4, 139.0, 136.0, 131.5, 131.2, 128.9, 127.8, 51.4; \(^{19}\)F (d\(_6\) DMSO) \(\delta\) –134.474. Anal. Calcd. For C\(_{11}\)H\(_{10}\)BClF\(_3\)KO\(_2\): C, 41.70; H, 3.18. Found: C, 41.87; H, 3.08.

\(\text{BF}_3\text{KO} \quad 4c\)

\(^1\)H NMR (d\(_6\) DMSO) \(\delta\) 8.10-7.40 (m, 8H), 3.69 (s, 3H), 1.46 (m, 2H); \(^{13}\)C NMR (d\(_6\) DMSO) \(\delta\) 170.6, 133.4, 132.9, 131.4, 128.4, 127.3, 126.8, 126.0, 125.6, 125.3, 124.0, 51.3; \(^{19}\)F (d\(_6\) DMSO) \(\delta\) –134.581. Anal. Calcd. for C\(_{15}\)H\(_{13}\)BF\(_3\)KO\(_2\): C, 54.24; H, 3.94. Found: C, 54.11; H, 3.92.

\(\text{BF}_3\text{KO} \quad 4d\)

\(^1\)H NMR (d\(_6\) DMSO) \(\delta\) 7.59 (d, \(J = 8\) Hz, 2H), 7.04 (s, 1H), 6.88 (d, \(J = 8\) Hz, 2H), 3.75 (s, 3H), 3.62 (s, 3H), 1.53 (m, 2H); \(^{13}\)C NMR (d\(_6\) DMSO) \(\delta\) 170.7, 158.4, 136.0, 131.0, 130.4, 128.9, 127.8, 51.4; \(^{19}\)F (d\(_6\) DMSO) \(\delta\) –134.474. Anal. Calcd. For C\(_{11}\)H\(_{10}\)BClF\(_3\)KO\(_2\): C, 41.70; H, 3.18. Found: C, 41.87; H, 3.08.
129.7, 113.3, 55.0, 51.2: \(^{19}\)F (d, DMSO) \(\delta -134.356\). Anal. Calcd. for C\(_{12}\)H\(_{13}\)BF\(_3\)KO\(_3\): C, 46.18; H, 4.20. Found: C, 45.92; H, 4.14

\[\text{BF}_3\text{K}O\text{Me}\]

\(^1\)H NMR (d, DMSO) \(\delta 7.50 (d, J = 8 \text{ Hz}, 2\text{H}), 7.11 (d, J = 8 \text{ Hz}, 2\text{H}), 7.01 (s, 1\text{H}), 3.61 (s, 3\text{H}), 2.28 (s, 3\text{H}), 1.52 (m, 2\text{H}); \)\(^{13}\)C NMR (d, DMSO) \(\delta 170.7, 137.3, 136.2, 134.3, 130.3, 129.5, 128.4, 51.2, 20.9; \)\(^{19}\)F (d, DMSO) \(\delta -134.335\). Anal. Calcd. for C\(_{12}\)H\(_{13}\)BF\(_3\)KO\(_2\): C, 48.67; H, 4.42. Found: C, 48.86; H, 4.22.

\[\text{BF}_3\text{KCl}\]

\(^1\)H NMR (d, DMSO) \(\delta 8.03 (dd, J = 8, 1.5 \text{ Hz}, 1\text{H}), 7.44-7.25 (m, 3\text{H}), 7.08 (s, 1\text{H}), 3.65 (s, 3\text{H}), 1.46 (brs, 2\text{H}); \)\(^{13}\)C NMR (d, DMSO) \(\delta 170.4, 140.3, 134.7, 132.9, 131.5, 128.9, 128.8, 126.6, 126.0, 51.5; \)\(^{19}\)F (d, DMSO) \(\delta -134.495\). Anal. Calcd. for C\(_{11}\)H\(_{10}\)BClF\(_3\)KO\(_2\): C, 41.74; H, 3.18. Found: C, 41.82; H, 3.16.
1H NMR (d\textsubscript{6} DMSO) \(\delta\) 7.64 (dd, \(J = 1.9, 0.8\) Hz, 1H), 6.92 (s, 1H), 6.80 (d, \(J = 3.4\) Hz, 1H), 6.51 (dd, \(J = 3.4, 1.9\) Hz, 1H), 3.61 (s, 3H), 1.59 (m, 2H); 13C NMR (d\textsubscript{6} DMSO) \(\delta\) 169.6, 152.6, 142.5, 135.9, 119.0, 111.9, 111.6, 51.4; 19F (d\textsubscript{6} DMSO) \(\delta\) –134.014. Anal. Calcd. for C\textsubscript{9}H\textsubscript{9}BF\textsubscript{3}KO\textsubscript{3}: C, 39.73; H, 3.33. Found: C, 39.87; H, 3.25.

Allylation reaction using allyltrifluoroborate salt 4a: To a solution of \(p\)-nitrobenzaldehyde (0.5 mmol) and tetra-\(n\)-butylammonium iodide (10 mol \%, 0.05 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (2 mL) was added allyltrifluoroborate salt 4a (0.5 mmol) and water (2 mL). The biphasic reaction mixture was
vigorously stirred at room temperature for 5 hr, the mixture diluted with CH₂Cl₂ (5 mL), and the layers separated. The aqueous layer was extracted with CH₂Cl₂ (3 X 5 mL), the combined extracts dried (MgSO₄), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography to obtain homoallylic alcohol 5a.

General procedure for the preparation of allylboronates 3 followed by allylation: To a mixture of Baylis-Hillman acetate adduct 1 (1 mmol) and bis(pinacolato)diboron 2 (1.1 mmol) in toluene (4 mL) was added 3 mol % of Pd₂(dba)₃ and the mixture stirred at 50 °C under nitrogen. After completion of the reaction (TLC), the reaction mixture was cooled to 0 °C and p-nitrobenzaldehyde (1 mmol) and BF₃·Et₂O (20 mol %) were added. The reaction mixture was allowed to stir at room temperature for 2 days, quenched with aqueous NaHCO₃, and extracted with ether. The combined organic layers were dried (MgSO₄), concentrated under vacuum, and purified by column chromatography to obtain 5.

\[
\text{Ph} \quad \text{O} \quad \text{O}_2N
\]

\[
\text{OMe} \quad \text{5a}
\]

\(^{1}\text{H NMR (CDCl}_3) \delta 8.08 (d, J = 8 \text{ Hz}, 2\text{H}), 7.42 (d, J = 8 \text{ Hz}, 2\text{H}), 7.30-7.20 \text{ (m, 5H), 6.26 (s, 1H), 5.82 (s,1H), 5.39 (m, 1H); 4.21 (d, J = 7 \text{ Hz}, 1\text{H}), 3.58 (s, 3\text{H), 2.69 (brs, 1H); }^{13}\text{C NMR (CDCl}_3) \delta 168.7, 149.6, 147.0, 140.2, 137.3, 129.1, 128.4, 127.5, 123.1, 74.3, 54.5, 51.9. \text{ Anal. Calcd. for C}_{18}\text{H}_{17}\text{NO}_5: C, 66.05; H, 5.23; N, 4.28. Found: C, 66.21, H, 5.14; N, 4.08.\]
^{1}H NMR (CDCl$_3$) δ 8.16 (d, $J = 8$ Hz, 2H), 7.52 (d, $J = 8$ Hz, 2H), 6.28 (s, 1H), 5.48 (s, 1H), 4.96 (m, 1H); 3.78 (s, 3H), 3.36 (brs, 1H), 2.94 (m, 1H), 1.52-1.0 (m, 14H), 0.86 (t, $J = 7$ Hz, 3H); 13C NMR (CDCl$_3$) δ 168.5, 150.2, 147.0, 139.9, 127.7, 127.2, 123.2, 75.4, 52.3, 49.6, 31.7, 29.3, 29.1, 27.2, 26.6, 22.6, 14.0. Anal. Calcd. for C$_{20}$H$_{20}$NO$_5$: C, 66.09; H, 8.04; N, 3.85. Found: C, 66.27; H, 8.12; N, 3.72.
250 MHz 1H NMR in DMSO-d$_6$
62.5 MHz 13C NMR in DMSO-d$_6$
19F NMR in DMSO-d_6
300 MHz 1H NMR in DMSO-d_6
75.5 MHz 13C NMR in DMSO-d$_6$
$^{19}\text{F} \text{NMR in DMSO-d}_6$
300 MHz 1H NMR in DMSO-d$_6$
75.5 MHz 13C NMR in DMSO-d$_6$
19F NMR in DMSO-d_6
300 MHz 1H NMR in DMSO-d_6
75.5 MHz 13C NMR in DMSO-d$_6$
19F NMR in DMSO-d_6
300 MHz 1H NMR in DMSO-d$_6$
$75.5 \text{ MHz } ^{13}\text{C NMR in DMSO-d}_6$
$^{19}\text{F NMR in DMSO-d}_6$
300 MHz 1H NMR in DMSO-d$_6$
$75.5 \text{ MHz } ^{13}\text{C NMR in DMSO-d}_6$
19F NMR in DMSO-d_6
300 MHz 1H NMR in DMSO-d$_6$
75.5 MHz 13C NMR in DMSO-d$_6$
19F NMR in DMSO-d_6
300 MHz 1H NMR in DMSO-d$_6$
75.5 MHz 13C NMR in DMSO-d$_6$
$^{19}\text{F NMR in DMSO-d}_6$
250 MHz 1H NMR in CDCl$_3$
62.5 MHz 13C NMR in CDCl$_3$
250 MHz 1H NMR in CDCl$_3$
62.5 MHz 13C NMR in CDCl$_3$