A New Efficient Method for Direct \(\alpha \)-Alkenylation of \(\beta \)-Dicarbonyl Compounds and Phenols Using Alkenyltriarylbismuthonium Salts

Yoshihiro Matano* and Hiroshi Imahori

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

Contents

General experimental information S2
Synthesis and spectral data of 3 S2
General procedure for the \(\alpha \)-alkenylation S4
Spectral data of the products S5
General experimental information

All reactions were carried out under argon. All melting points are uncorrected. 1H and 13C NMR spectra were recorded using CDCl$_3$ as the solvent. Chemical shifts are reported as the relative value vs. tetramethyldisilane and J values are given in Hz. IR spectra were observed as KBr pellets or neat. MS spectra were measured using m-nitrobenzyl alcohol as a matrix. Column chromatography was performed on a fast flow liquid chromatography system fitted with a silica gel column. CH$_2$Cl$_2$ was distilled from CaH$_2$ before use. Toluene was distilled from sodium and stored over molecular sieves 4A. Other reagents were used as commercially received. Alkenylbismuthonium salts 3a-l were prepared from triaryltributonium difluorides 1, alkenylboronic acids 2, and BF$_3$•OEt$_2$ according to the reported procedure. 1 Compound 3m was prepared by the BF$_3$•OEt$_2$-promoted reaction of 1a with trimethyl(2-methyl-1-propenyl)stannane. 2

Synthesis of alkenylbismuthonium salts. General procedure: 1 To a mixture of 1 (1.0 mmol), 2 (1.1 mmol), and CH$_2$Cl$_2$ (20 mL) was added BF$_3$•OEt$_2$ (1.5 mmol) at 0 °C, and the resulting mixture was stirred at room temperature for 2 h. An aqueous solution of NaBF$_4$ (10 mmol) was added to the mixture, and the resulting two-phase solution was stirred vigorously for 15 min. The organic phase was separated, and the water phase was extracted twice with CH$_2$Cl$_2$ (5 mL). The combined organic extracts were dried over MgSO$_4$ and concentrated under reduced pressure to leave a sticky solid, which was then recrystallized from CH$_2$Cl$_2$/Et$_2$O to give 3 as colorless solid.

((E)-Hex-1-enyl)tris(4-methylphenyl)bismuthonium tetrafluoroborate (3a): mp 130–131 °C; 1H NMR δ 0.90 (t, 3H, $J = 7.3$ Hz), 1.34 (tq, 2H, $J = 7.6$, 7.3 Hz), 1.48 (tt, 2H, $J = 7.1$, 7.6 Hz), 2.42 (m, 2H), 2.43 (s, 9H), 6.50 (m, 1H), 7.42 (d, 6H, $J = 8.1$ Hz), 7.58 (d, 6H, $J = 8.1$ Hz), 7.84 (br-d, 1H); 13C{1H} NMR δ 13.8, 21.6, 22.3, 30.1, 36.5, 124.2, 132.6, 133.5, 135.5, 142.6, 156.0; IR (KBr) ν_{max} 2959, 2926, 2872, 1489, 1450, 1393, 1310, 1209, 1188, 1150–950 (BF$_4$–), 799, 538, 521, 478 cm$^{-1}$; MS (FAB) m/z 565 ([M – BF$_4$]$^+$). Anal. Calcd for C$_{27}$H$_{32}$BBiF$_4$ C, 49.71; H, 4.94. Found: C, 49.57; H, 4.79.

((E)-Hex-1-enyl)tris(4-methoxyphenyl)bismuthonium tetrafluoroborate (3c): mp 74–75 °C; 1H NMR δ 0.90 (t, 3H, $J = 7.2$ Hz), 1.30–1.40 (m, 2H), 1.42–1.56 (m, 2H), 2.41 (m, 2H), 3.85 (s, 9H), 6.50 (m, 1H), 7.13 (d, 6H, $J = 8.3$ Hz), 7.61 (d, 6H, $J = 8.3$ Hz), 7.77 (br-d, 1H); 13C{1H} NMR δ 13.8,

1 Matano, Y.; Begum, S. A.; Miyamatsu, T.; Suzuki, H. Organometallics 1998, 17, 4332. Compounds 3 can be easily isolated by recrystallization from CH$_2$Cl$_2$/Et$_2$O.

22.3, 30.1, 36.5, 55.6, 117.5, 124.0, 126.9, 137.0, 156.0, 162.3; IR (KBr) ν_{max} 2959, 1580, 1491, 1458, 1398, 1294, 1252, 1178, 1150–950 (BF_{4}^{-}), 820, 787, 584, 513 cm^{-1}; MS (FAB) m/z 613 ([M – BF_{4}]^{+}).
Anal. Calcd for C_{27}H_{32}BBiF_{4}O_{3}: C, 46.31; H, 4.61. Found: C, 46.32; H, 4.54.

((E)-Hex-1-enyl)tris(4-t-butylphenyl)bismuthonium tetrafluoroborate (3d): mp 153–154 °C; ^{1}H NMR δ 0.91 (t, 3H, J = 7.2 Hz), 1.30–1.40 (m, 2H), 1.34 (s, 27H), 1.45–1.55 (m, 2H), 2.42 (dt, 2H, J = 7.1, 6.8 Hz), 6.53 (dt, 1H, J = 15, 7.1 Hz), 7.64 (br-s, 12H), 7.86 (d, 1H, J = 15 Hz); ^{13}C{^{1}H} NMR δ 13.8, 22.3, 30.1, 31.1, 35.2, 36.5, 124.3, 128.9, 133.7, 135.4, 155.5, 155.9; IR (KBr) ν_{max} 3061, 2961, 2870, 1580, 1556, 1487, 1464, 1394, 1364, 1331, 1265, 1204, 1180–900 (BF_{4}^{-}), 820, 762, 719, 629, 546, 517 cm^{-1}; MS (FAB) m/z 691 ([M – BF_{4}]^{+}). Anal. Calcd for C_{36}H_{50}BBiF_{4}: C, 55.54; H, 6.47. Found: C, 55.40; H, 6.52.

((E)-Hex-1-enyl)tris(2-methoxyphenyl)bismuthonium tetrafluoroborate (3e): mp 171–173 °C; ^{1}H NMR δ 0.91 (t, 3H, J = 7.3 Hz), 1.36 (tq, 2H, J = 7.6, 7.3 Hz), 1.48 (tt, 2H, J = 7.1, 7.6 Hz), 2.43 (q, 2H, J = 7.1 Hz), 3.83 (s, 9H), 6.61 (m, 1H), 7.23 (t, 3H, J = 7.6 Hz), 7.28 (d, 3H, J = 8.3 Hz), 7.47 (d, 3H, J = 7.3 Hz), 7.56 (m, 1H), 7.65 (dd, 3H, J = 7.3, 8.3 Hz); ^{13}C{^{1}H} NMR δ 13.8, 22.2, 30.3, 36.1, 56.7, 112.5, 122.8, 124.6, 124.9, 134.4, 135.2, 155.0, 159.9; IR (KBr) ν_{max} 2980, 2965, 1589, 1570, 1472, 1439, 1279, 1244, 1163, 1150–950 (BF_{4}^{-}), 785, 764, 754, 648, 565, 538, 521, 480, 425 cm^{-1}; MS (FAB) m/z 613 ([M – BF_{4}]^{+}). Anal. Calcd for C_{27}H_{32}BBiF_{4}O_{3}: C, 46.31; H, 4.61. Found: C, 45.64; H, 4.50.

((E)-3,3-Dimethylbut-1-enyl)tris(4-methylphenyl)bismuthonium tetrafluoroborate (3f): mp 149–150 °C; ^{1}H NMR δ 1.17 (s, 9H), 2.43 (s, 9H), 6.47 (d, 1H, J = 16 Hz), 7.42 (d, 6H, J = 7.9 Hz), 7.58 (d, 6H, J = 7.9 Hz), 7.82 (br-d, 1H, J = 16 Hz); ^{13}C{^{1}H} NMR δ 21.6, 28.6, 39.4, 121.6, 132.5, 133.8, 135.5, 142.5, 164.7; IR (KBr) ν_{max} 2963, 1489, 1450, 1393, 1367, 1313, 1256, 1209, 1190, 1150–950 (BF_{4}^{-}), 800, 521, 476 cm^{-1}; MS (FAB) m/z 565 ([M – BF_{4}]^{+}). Anal. Calcd for C_{27}H_{32}BBiF_{4} C, 49.71; H, 4.94. Found: C, 49.63; H, 4.86.

Tris(4-methylphenyl)((E)-oct-1-enyl)bismuthonium tetrafluoroborate (3g): sticky solid; ^{1}H NMR δ 0.87 (t, 3H, J = 6.7 Hz), 1.20–1.35 (m, 6H), 1.43–1.55 (m, 2H), 2.37–2.43 (m, 2H), 2.42 (s, 9H), 6.49 (dt, 1H, J = 15, 7.6 Hz), 7.42 (d, 6H, J = 7.9 Hz), 7.58 (d, 6H, J = 7.9 Hz), 7.80 (d, 1H, J = 15 Hz); IR (KBr) ν_{max} 2928, 2856, 1590, 1489, 1453, 1393, 1313, 1283, 1209, 1190, 1150–950 (BF_{4}^{-}), 797, 725 cm^{-1}; MS (FAB) m/z 593 ([M – BF_{4}]^{+}). Anal. Calcd for C_{26}H_{32}BBiF_{4} C, 51.19; H, 5.33. Found: C, 50.89; H, 5.37.

Tris(4-methoxyphenyl)((E)-oct-1-enyl)bismuthonium tetrafluoroborate (3h): sticky solid; ^{1}H
NMR δ 0.87 (t, 3H, J = 6.8 Hz), 1.22–1.38 (m, 6H), 1.45–1.54 (m, 2H), 2.41 (dt, 2H, J = 7.6, 6.8 Hz), 3.85 (s, 9H), 6.48 (m, 1H), 7.12 (d, 6H, J = 8.8 Hz), 7.62 (d, 6H, J = 8.8 Hz), 7.79 (d, 1H, J = 15 Hz); MS (FAB) m/z 641 ([M – BF₄⁺]). Anal. Calcd for C₂₉H₃₆BBiF₄O₃: C, 47.82; H, 4.98. Found: C, 47.55; H, 4.96.

((E)-Oct-1-enyl)tris(4-t-butylphenyl)bismuthonium tetrafluoroborate (3i): mp 105–106 °C; ¹H NMR δ 0.87 (t, 3H, J = 6.8 Hz), 1.22–1.38 (m, 6H), 1.45–1.54 (m, 2H), 2.41 (dt, 2H, J = 7.5, 7.0 Hz), 6.53 (m, 1H), 7.64 (br-s, 12H), 7.85 (br-d, 1H); IR (KBr) νmax 2963, 2868, 1589, 1565, 1472, 1439, 1393, 1364, 1279, 1244, 1163, 1150–950 (BF₄⁻), 816, 760, 752, 548, 521, 480, 426 cm⁻¹; MS (FAB) m/z 719 ([M – BF₄⁺]). Anal. Calcd for C₃₈H₅₄BBiF₄: C, 56.58; H, 6.75. Found: C, 55.92; H, 6.62.

Styryltris(4-methylphenyl)bismuthonium tetrafluoroborate (3j): mp 204–205 °C; ¹H NMR δ 2.44 (s, 9H), 7.25 (d, 1H, J = 15 Hz), 7.33–7.43 (m, 3H), 7.45 (d, 6H, J = 7.9 Hz), 7.56 (dd, 2H, J = 7.3, 1.9 Hz), 7.64 (d, 6H, J = 7.9 Hz), 8.63 (d, 1H, J = 15 Hz); ¹³C{¹H} NMR δ 21.6, 125.2, 127.8, 128.9, 130.5, 132.7, 133.5, 135.3, 135.5, 142.7, 151.2; IR (KBr) νmax 2963, 2868, 1487, 1450, 1391, 1312, 1283, 1209, 1188, 1163, 1150–950 (BF₄⁻), 816, 760, 752, 548, 521, 480, 426 cm⁻¹; MS (FAB) m/z 585 ([M – BF₄⁺]); Anal. Calcd for C₂₉H₂₈BBiF₄: C, 51.81; H, 4.20. Found: C, 51.72; H, 4.23.

Styryltris(2-methoxyphenyl)bismuthonium tetrafluoroborate (3k): mp 155–157 °C; ¹H NMR δ 3.84 (s, 9H), 7.23–7.32 (m, 6H), 7.33–7.46 (m, 4H), 7.53–7.60 (m, 5H), 7.66 (dd, 3H, J = 7.6, 1.2 Hz), 8.31 (br-s, 1H); IR (KBr) νmax 1589, 1568, 1472, 1435, 1298, 1277, 1244, 1163, 1150–950 (BF₄⁻), 787, 758, 735, 538, 521, 480, 428 cm⁻¹; MS (FAB) m/z 633 ([M – BF₄⁺]). Anal. Calcd for C₂₉H₂₈BBiF₄O₃: C, 48.36; H, 3.92. Found: C, 48.07; H, 3.85.

((E)-Prop-1-enyl)tris(4-methylphenyl)bismuthonium tetrafluoroborate (3l): sticky solid; ¹H NMR δ 2.11 (dd, 3H, J = 6.4, 1.2 Hz), 2.43 (s, 9H), 6.55 (br-s, 1H), 7.42 (d, 6H, J = 7.6 Hz), 7.58 (d, 6H, J = 7.6 Hz), 7.83 (br-s, 1H); ¹³C{¹H} NMR δ 21.4, 21.6, 124.9, 132.6, 133.1, 135.4, 142.7, 151.7; IR (KBr) νmax 3000, 2989, 1499, 1390, 1314, 1283, 1208, 1150–900 (BF₄⁻), 841, 793, 700, 635, 569, 519, 473 cm⁻¹; MS (FAB) m/z 523 ([M – BF₄⁺]). Anal. Calcd for C₂₉H₂₆BBiF₄: C, 47.24; H, 4.29. Found: C, 46.95; H, 4.20. The E/Z mixture 3l’ was prepared using an E/Z mixture of the corresponding boronic acid 2l’. The E/Z ratios of 3l’ and 2l’ were determined by ¹H NMR.

Reaction of 3 with carbonyl compounds in the presence of TMG. General procedure: To a mixture of 3 (0.50 mmol), carbonyl compound (0.50 mmol), and toluene (5 mL) was added TMG (65
µL, 0.50 mmol) at –50 °C. The resulting mixture was allowed to warm to room temperature with vigorous stirring. Water (5 mL) and Et₂O (5 mL) were added to the mixture, and the organic phase was washed with water (2 mL × 3), dried over MgSO₄, and concentrated under reduced pressure. Adding a suitable amount of MeOH (5–10 mL) to the residue caused precipitation of the bismuthane as a colorless solid. After removal of the bismuthane by filtration, the filtrate was concentrated in vacuo to give an oily residue, which was chromatographed on silica gel using hexane/ethyl acetate as eluents to afford β,γ-unsaturated carbonyl compounds.

Ethyl 1-((E)-hex-1-enyl)-2-oxocyclohexanecarboxylate (5a): oil; ¹H NMR δ 0.88 (t, 3H, J = 7.0 Hz), 1.25 (t, 3H, J = 7.0 Hz), 1.31 (m, 4H), 1.85–2.20 (m, 6H), 2.33 (m, 3H), 2.58 (dt, 1H, J = 13.2, 6.8 Hz), 4.15 (q, 2H, J = 7.0 Hz), 5.57 (dd, 1H, J = 15.6, 6.0 Hz), 5.64 (d, 1H, J = 15.6 Hz); IR (neat) νmax 2959, 2930, 1752, 1732, 1459, 1235, 1175, 1145, 1098, 1028, 974 cm⁻¹; MS (FAB) m/z 253 ([M + H]+). A good analytical data for 5a was not obtained, although the spectral data indicated its high state of purity.

Ethyl 1-((E)-oct-1-enyl)-2-oxocyclohexanecarboxylate (5b): oil; ¹H NMR δ 0.87 (t, 3H, J = 7.0 Hz), 1.20–1.40 (m, 11H), 1.61–1.84 (m, 4H), 1.94–2.10 (m, 3H), 2.30–2.68 (m, 3H), 4.13–4.26 (m, 2H), 5.52 (dt, 1H, J = 15.9, 6.8 Hz), 5.85 (d, 1H, J = 15.9 Hz); IR (neat) νmax 2930, 2856, 1717, 1453, 1366, 1337, 1238, 1204, 1132, 1088, 1063, 1022, 970, 910, 854 cm⁻¹; MS (FAB) m/z 281 ([M + H]+). Anal. Calcd for C₁₇H₂₈O₃: C, 72.82; H, 10.06. Found: C, 72.97; H, 10.10.

Ethyl 1-((E)-styryl)-2-oxocyclohexanecarboxylate (5c): oil; ¹H NMR δ 1.26 (t, 3H, J = 7.0 Hz), 1.65–1.90 (m, 4H), 2.00–2.06 (m, 1H), 2.45–2.57 (m, 2H), 2.72–2.77 (m, 1H), 4.18–4.30 (m, 2H), 6.45 (d, 1H, J = 16.5 Hz), 6.69 (d, 1H, J = 16.5 Hz), 7.23 (t, 1H, J = 7.0 Hz), 7.31 (t, 2H, J = 7.6 Hz), 7.40 (d, 2H, J = 7.0 Hz); MS (FAB) m/z 273 ([M + H]+).

Ethyl 2-oxo-1-(4-methylphenyl)cyclohexanecarboxylate (6a): ¹H NMR δ 1.24 (t, 3H, J = 7.0 Hz), 1.65–1.90 (m, 4H), 1.95–2.05 (m, 1H), 2.34 (s, 3H), 2.55–2.60 (m, 2H), 2.70–2.80 (m, 1H), 4.18–4.25 (m, 2H), 7.12 (d, 2H, J = 7.6 Hz), 7.17 (t, 2H, J = 7.6 Hz).

Ethyl 2-oxo-1-phenylcyclohexanecarboxylate (6b): ¹H NMR δ 1.25 (t, 3H, J = 7.0 Hz), 1.60–1.90 (m, 4H), 1.95–2.05 (m, 1H), 2.55–2.60 (m, 2H), 2.70–2.80 (m, 1H), 4.18–4.25 (m, 2H), 7.20–7.40 (m, 5H).

((E)-Hex-1-enyl)bis(4-methylphenyl)bismuthane (8a): ¹H NMR δ 0.89 (t, 3H, J = 7.1 Hz), 1.20–1.45

(m, 4H), 2.16 (dt, 2H, J = 6.3, 6.8 Hz), 6.41 (dt, 1H, J = 17.3, 6.3 Hz), 7.18 (d, 4H, J = 7.8 Hz), 7.68 (d, 4H, J = 7.8 Hz), 7.73 (d, 1H, J = 17.3 Hz). Compound 8a was characterized only by 1H NMR.

(E)-Hex-1-enyl)diphenylbismuthane (8b): 1H NMR δ 0.90 (t, 3H, J = 7.3 Hz), 1.30–1.50 (m, 4H), 2.17 (dt, 2H, J = 6.3, 6.8 Hz), 6.43 (dt, 1H, J = 17.4, 6.3 Hz), 7.28 (t, 2H, J = 7.3 Hz), 7.36 (t, 4H, J = 7.3 Hz), 7.77 (d, 1H, J = 17.4 Hz), 7.81 (d, 4H, J = 7.3 Hz); IR (neat) ν_{max} 2957, 2926, 1570, 1541, 1474, 1429, 1380, 1330, 1215, 1170, 1057, 1015, 997, 978, 723, 695 cm$^{-1}$; MS (FAB) m/z 369, 363, 292, 286, 209. Anal. Calcd for C$_{18}$H$_{21}$Bi: C, 48.44; H, 4.74. Found: C, 48.74; H, 4.58.

(2-Methylprop-1-enyl)diphenylbismuthane (8c): 1H NMR δ 1.86 (s, 3H), 2.01 (s, 3H), 7.27 (dt, 2H, J = 1.2, 7.3 Hz), 7.35 (t, 4H, J = 7.3 Hz), 7.58 (s, 1H), 7.80 (dd, 4H, J = 1.2, 7.8 Hz). Compound 8f was characterized only by 1H NMR.

Ethyl 1-((E)-hex-1-enyl)-2-oxocyclopentanecarboxylate (10): oil; 1H NMR δ 1.27 (t, 3H, J = 7.3 Hz), 1.94–2.12 (m, 2H), 2.26–2.50 (m, 3H), 2.72 (dt, 1H, J = 13.2, 6.8 Hz), 4.20 (q, 2H, J = 7.0 Hz), 6.41 (d, 1H, J = 16.3 Hz), 6.51 (d, 1H, J = 16.3 Hz), 7.24 (t, 1H, J = 7.3 Hz), 7.31 (t, 2H, J = 7.3 Hz), 7.39 (d, 2H, J = 7.3 Hz).

(3E)-Ethyl 2-acetyl-4-phenyl-2-styrylbut-3-enoate (12): mp 74–75 °C; 1H NMR δ 1.31 (t, 3H, J = 7.3 Hz), 2.25 (s, 3H), 4.31 (q, 2H, J = 7.3 Hz), 6.47 (d, 2H, J = 16.6 Hz), 6.82 (d, 2H, J = 16.6 Hz), 7.27 (t, 2H, J = 7.3 Hz), 7.33 (t, 4H, J = 7.3 Hz), 7.43 (d, 4H, J = 7.3 Hz); IR (KBr) ν_{max} 1740, 1709, 1578, 1499, 1472, 1448, 1352, 1281, 1235, 1180, 1153, 1057, 1015, 995, 858, 768, 747, 689, 598, 538, 494, 471 cm$^{-1}$. Anal. Calcd for C$_{22}$H$_{22}$O$_3$: C, 79.02; H, 6.63. Found: C, 78.79; H, 6.67.

(E)-Ethyl 2-acetyl-2-methyl-4-phenylbut-3-enoate (15): oil; 1H NMR δ 1.30 (t, 3H, J = 7.1 Hz), 1.59 (s, 3H), 2.21 (s, 3H), 4.25 (q, 2H, J = 7.1 Hz), 6.45 (d, 1H, J = 16.5 Hz), 7.26 (t, 1H, J = 7.6 Hz), 7.33 (t, 2H, J = 7.6 Hz), 7.41 (d, 2H, J = 7.3 Hz).

2-((E)-Hex-1-enyl)-2-phenylindan-1,3-dione (17a): oil; 1H NMR δ 0.86 (t, 3H, J = 7.0 Hz), 1.25-1.40 (m, 4H), 2.09 (m, 2H), 5.80 (s, 2H), 7.20-7.35 (m, 5H), 7.88 (m, 2H), 8.05 (m, 2H); IR (neat) ν_{max} 3026, 2957, 2928, 1744, 1710, 1597, 1497, 1466, 1447, 1350, 1331, 1256, 1161, 1042, 976, 872, 783, 756, 725, 704, 695 cm$^{-1}$; MS (FAB) m/z 304 (M$^+$). Anal. Calcd for C$_{21}$H$_{20}$O$_2$: C, 82.86; H, 6.62. Found: C, 82.82; H, 6.76.

2-((E)-3,3-Dimethylbut-1-enyl)-2-phenylindan-1,3-dione (17b): mp 108–109 °C; 1H NMR δ 1.01 (s, 9H), 5.73 (d, 1H, J = 16.0 Hz), 5.87 (d, 1H, J = 16.0 Hz), 7.23–7.32 (m, 5H), 7.89 (m, 2H), 8.06 (m, 2H); IR (KBr) ν_{max} 2961, 1740, 1709, 1593, 1497, 1460, 1447, 1345, 1327, 1294, 1252, 1202, 1163, 1055, 1034, 978, 883, 787, 756, 725, 706, 694, 623, 550, 538, 494 cm$^{-1}$; MS (FAB) m/z 304 (M$^+$).
Anal. Calcd for C_{21}H_{20}O_{2}: C, 82.86; H, 6.62. Found: C, 82.81; H, 6.55.

2-((E)-Oct-1-enyl)-2-phenylindan-1,3-dione (17c): oil; ^1H NMR δ 0.85 (t, 3H, J = 6.8 Hz), 2.03–2.10 (m, 2H), 7.23–7.33 (m, 5H), 7.89 (m, 2H); IR (neat) ν_{max} 2928, 2855, 1744, 1709, 1597, 1497, 1466, 1447, 1350, 1331, 1256, 1159, 1043, 974, 783, 756, 727, 704, 694 cm⁻¹; MS (FAB) m/z 333 ([M + H]⁺). Anal. Calcd for C_{23}H_{24}O_{2}: C, 83.10; H, 7.28. Found: C, 82.89; H, 7.24.

2-Phenyl-2-((E)-prop-1-enyl)indan-1,3-dione (17d): mp 99–101 °C; ^1H NMR δ 1.74 (d, 3H, J = 4.4 Hz), 5.81 (m, 2H), 7.23–7.35 (m, 5H), 7.87 (dd, 2H, J = 5.8, 3.0 Hz), 8.05 (dd, 2H, J = 5.8, 3.0 Hz); IR (KBr) ν_{max} 1746, 1703, 1597, 1499, 1449, 1352, 1331, 1250, 1048, 976, 868, 812, 781, 758, 731, 704, 613, 544, 494 cm⁻¹; MS (FAB) m/z 263 ([M + H]⁺). Anal. Calcd for C_{18}H_{14}O_{2}: C, 82.42; H, 5.38. Found: C, 82.30; H, 5.53.

2-Phenyl-2-styrylindan-1,3-dione (17e): mp 93–95 °C; ^1H NMR δ 6.54 (d, 1H, J = 16.2 Hz), 6.76 (d, 1H, J = 16.2 Hz), 7.20–7.40 (m, 10H), 7.91 (dd, 2H, J = 5.6, 3.0 Hz), 8.09 (dd, 2H, J = 5.6, 3.0 Hz); IR (KBr) ν_{max} 3027, 1744, 1707, 1595, 1497, 1447, 1350, 1331, 1254, 1159, 1080, 1046, 1030, 970, 895, 878, 824, 785, 747, 729, 695, 627, 596, 520 cm⁻¹; MS (FAB) m/z 324 (M⁺). Anal. Calcd for C_{23}H_{16}O_{2}: C, 85.16; H, 4.97. Found: C, 84.97; H, 4.83.

2-(2-Methylprop-1-enyl)-2-phenylindan-1,3-dione (17f): mp 91–92 °C; ^1H NMR δ 1.42 (d, 3H, J = 1.0 Hz), 1.80 (d, 3H, J = 1.0 Hz), 5.48 (s, 1H), 7.20–7.36 (m, 5H), 7.86 (m, 2H); IR (KBr) ν_{max} 1742, 1707, 1589, 1489, 1448, 1387, 1350, 1256, 1165, 876, 779, 756, 731, 702, 646, 538, 498 cm⁻¹; MS (FAB) m/z 277 ([M + H]⁺). Anal. Calcd for C_{19}H_{16}O_{2}: C, 82.58; H, 5.84. Found: C, 82.35; H, 5.85.

2-(2-Methylprop-1-enyl)-2-phenylindan-1,3-dione (17f): mp 91–92 °C; ^1H NMR δ 1.42 (d, 3H, J = 1.0 Hz), 1.80 (d, 3H, J = 1.0 Hz), 5.48 (s, 1H), 7.20–7.36 (m, 5H), 7.86 (m, 2H); IR (KBr) ν_{max} 1742, 1707, 1589, 1489, 1448, 1387, 1350, 1256, 1165, 876, 779, 756, 731, 702, 646, 538, 498 cm⁻¹; MS (FAB) m/z 277 ([M + H]⁺). Anal. Calcd for C_{19}H_{16}O_{2}: C, 82.58; H, 5.84. Found: C, 82.35; H, 5.85.

2-(2-Methylprop-1-enyl)-2-phenylindan-1,3-dione (17f): mp 91–92 °C; ^1H NMR δ 1.42 (d, 3H, J = 1.0 Hz), 1.80 (d, 3H, J = 1.0 Hz), 5.48 (s, 1H), 7.20–7.36 (m, 5H), 7.86 (m, 2H); IR (KBr) ν_{max} 1742, 1707, 1589, 1489, 1448, 1387, 1350, 1256, 1165, 876, 779, 756, 731, 702, 646, 538, 498 cm⁻¹; MS (FAB) m/z 277 ([M + H]⁺). Anal. Calcd for C_{19}H_{16}O_{2}: C, 82.58; H, 5.84. Found: C, 82.35; H, 5.85.

2-(4-Methylphenyl)-2-phenylindan-1,3-dione (18a): mp 103-105 °C; ^1H NMR δ 2.30 (s, 3H), 7.11 (d, 2H, J = 8.4 Hz), 7.16 (d, 2H, J = 8.4 Hz), 7.23–7.35 (m, 5H), 7.88 (dd, 2H, J = 5.5, 3.0 Hz), 8.08 (dd, 2H, J = 5.5, 3.0 Hz); IR (KBr) ν_{max} 1742, 1732, 1707, 1590, 1510, 1493, 1445, 1352, 1327, 1250, 10884, 850, 808, 795, 770, 752, 706, 691, 668, 610, 507 cm⁻¹. MS (FAB) m/z 312 (M⁺). Anal. Calcd for C_{22}H_{16}O_{2}: C, 84.99; H, 5.16. Found: C, 84.89; H, 5.26.

2,2-Diphenylindan-1,3-dione (18b): mp 126–128 °C (lit., 125 °C); ^1H NMR δ 7.25–7.35 (m, 10H), 7.87–7.94 (m, 2H), 8.07–8.13 (m, 2H).

2,6-Dimethyl-6-styrylcyclohexa-2,4-dienone (20):^6^ oil; ¹H NMR δ 1.43 (s, 3H), 1.86 (s, 3H), 6.21 (d, 1H, J = 16.2 Hz), 6.24 (dd, 1H, J = 9.7, 6.1 Hz), 6.34 (d, 1H, J = 9.7 Hz), 6.38 (d, 1H, J = 16.2 Hz), 6.84 (dt, 1H, J = 6.1, 1.3 Hz), 7.21 (t, 1H, J = 7.2 Hz), 7.28 (t, 2H, J = 7.3 Hz), 7.33 (d, 2H, J = 7.3 Hz).

1,1-Bis((E)-3,3-dimethylbut-1-enyl)-1H-naphthalen-2-one (22): oil; ¹H NMR δ 0.98 (s, 18H), 5.29 (d, 2H, J = 15.9 Hz), 5.47 (d, 2H, J = 15.9 Hz), 6.08 (d, 1H, J = 10.0 Hz), 7.22 (d, 1H, J = 7.1 Hz), 7.27–7.42 (m, 4H); IR (neat) ν_max 2959, 2903, 2866, 1668, 1566, 1475, 1462, 1394, 1364, 1298, 1267, 1236, 1204, 1128, 974, 851, 827, 758 cm⁻¹; MS (FAB) m/z 309 ([M + H]⁺). Anal. Calcd for C₂₂H₂₈O: C, 85.66; H, 9.15. Found: C, 85.53; H, 9.13.

Reaction of 3 with TMG. To a CDCl₃ solution (ca. 0.5 mL) of 3a,f,j (0.02 mmol) was added TMG (0.02 mmol), and the resulting mixture was monitored at room temperature by ¹H NMR spectroscopy. In all cases examined, bismuthane 7a and acetylene 23 were formed in good yields. The products were identified by comparison with authentic specimens. 23a (from 3a): ¹H NMR δ 0.92 (t, 3H, J = 7.0 Hz), 1.35-1.55 (m, 4H), 1.93 (t, 1H, J = 2.6 Hz), 2.19 (dt, 2H, J = 2.6, 7.0 Hz). 23b (from 3f): ¹H NMR δ 1.24 (s, 1H), 2.08 (s, 9H). 23c (from 3j): ¹H NMR δ 3.07 (s, 1H), 7.2–7.5 (m, 5H).
