The Role of Ligand Displacement in Sm(II)-HMPA Based Reductions

Edamana Prasad,a Brian W. Knettle,b and Robert A. Flowers, II*a

aDepartment of Chemistry, Lehigh University, Bethlehem PA 18015, USA

bDepartment of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, TX 79409-1061, USA

Supporting Information

List of Contents

Stopped Flow decay trace for [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 1 equ. HMPA+ 2-butanone system	S3
Stopped Flow decay trace for [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 1 equ. HMPA+ 1-iodobutane system	S3
Stopped Flow decay trace for [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 2 equ. HMPA+ 2-butanone system	S4
Stopped Flow decay trace for [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 2 equ. HMPA+ 1-iodobutane system	S4
Stopped Flow decay trace for [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 6 equ. HMPA+ 2-butanone system	S5
Stopped Flow decay trace for [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 6 equ. HMPA+ 1-iodobutane system	S5
Stopped Flow decay trace for [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 10 equ. HMPA+ 1-iodobutane system	S6
Plot of k vs equivalents of HMPA in [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] /2-butanone system	S6
Erying plot for [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 10 equ. HMPA+ 2-butanone system	S7
Erying plot for [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 10 equ. HMPA+ 1-iodobutane system	S7
Rate order determination with respect to 1-iodobutane in [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 1 equ. HMPA+ 1-iodobutane system	S8
Rate order determination with respect to 1-iodobutane in [Sm\{N(SiMe\textsubscript{3})\textsubscript{2}\}\textsubscript{2}] + 2 equ. HMPA+ 1-iodobutane system	S8
Rate order determination with respect to 1-iodobutane in
[Sm{N(SiMe$_3$)$_2$)$_2$] + 6 equ. HMPA+ 1-iodobutane system

Rate order determination with respect to 1-iodobutane in
[Sm{N(SiMe$_3$)$_2$)$_2$] + 10 equ. HMPA+ 1-iodobutane system

Rate order determination with respect to 2-butanone in
[Sm{N(SiMe$_3$)$_2$)$_2$] + 1 equ. HMPA+ 2-butanone system

Rate order determination with respect to 2-butanone in
[Sm{N(SiMe$_3$)$_2$)$_2$] + 2 equ. HMPA+ 2-butanone system

Rate order determination with respect to 2-butanone in
[Sm{N(SiMe$_3$)$_2$)$_2$] + 6 equ. HMPA+ 2-butanone system

Rate order determination with respect to 2-butanone in
[Sm{N(SiMe$_3$)$_2$)$_2$] + 10 equ. HMPA+ 2-butanone system

Calibration curve for VPO experiment

Molecular Weight determination data by VPO experiment

ITC experimental data
Figure S1: Stopped Flow decay trace for [Sm\{N(SiMe$_3$)$_2$\}]$_2$ (0.02M) in presence of HMPA (1 equivalent to the concentration of Sm (II) species) and 2-butanone (0.20 M) in THF at 25 °C.

Figure S2: Stopped Flow decay trace for [Sm\{N(SiMe$_3$)$_2$\}]$_2$ (0.02M) in presence of HMPA (1 equivalent to the concentration of Sm (II) species) and 1-iodobutane (0.20 M) in THF at 25 °C.
Figure S3: Stopped Flow decay trace for $[\text{Sm}\{\text{N(SiMe}_3\}_2\}]$ (0.02M) in presence of HMPA (2 equivalent to the concentration of Sm (II) species) and 2-butanone (0.20 M) in THF at 25 $^\circ$C.

Figure S4: Stopped Flow decay trace for $[\text{Sm}\{\text{N(SiMe}_3\}_2\}]$ (0.02M) in presence of HMPA (2 equivalent to the concentration of Sm (II) species) and 1-iodobutane (0.20 M) in THF at 25 $^\circ$C.
Figure S5: Stopped Flow decay trace for $[\text{Sm}\{\text{N(SiMe}_3\}_2\}]$ (0.02M) in presence of HMPA (6 equivalent to the concentration of Sm (II) species) and 2-butanone (0.20 M) in THF at 25 °C.

Figure S6: Stopped Flow decay trace for $[\text{Sm}\{\text{N(SiMe}_3\}_2\}]$ (0.02M) in presence of HMPA (6 equivalent to the concentration of Sm (II) species) and 1-iodobutane (0.20 M) in THF at 25 °C.
Figure S7: Stopped Flow decay trace for $[\text{Sm}\{\text{N(SiMe}_3\}_2\}]$ (0.02M) in presence of HMPA (10 equivalent to the concentration of Sm (II) species) and 1-iodobutane (0.20 M) in THF at 25 °C.

Figure S8: A plot of rate constant vs equivalents of HMPA for the reduction of 2-butanone by $[\text{Sm}\{\text{N(SiMe}_3\}_2\}]$ in THF at 25 °C.
Figure S9: Erying plot for [Sm{N(SiMe$_3$)$_2$}] + 10 equ. HMPA+ 2-butanone system in THF.

Figure S10: Erying plot for [Sm{N(SiMe$_3$)$_2$}] + 10 equ. HMPA+ 1-iodobutane system in THF.
Figure S11: A plot of \(\log k_{\text{obs}} \) vs \(\log [1\text{-iodobutane}] \) in Sm\{N(SiMe}_3\}_2 \] + 1 equ. HMPA+ 1-iodobutane system

\[\text{slope} = 0.92 \pm 0.01 \]
\[R^2 = 0.9997 \]

Figure S12: A plot of \(\log k_{\text{obs}} \) vs \(\log [1\text{-iodobutane}] \) in Sm\{N(SiMe}_3\}_2 \] + 2 equ. HMPA+ 1-iodobutane system

\[\text{slope} = 1.00 \pm 0.03 \]
\[R^2 = 0.9982 \]
slope = 0.90 ± 0.01
$R^2 = 0.9996$

Figure S13: A plot of log $k_{obs.}$ vs log [1-iodobutane] in Sm{N(SiMe$_3$)$_2$)$_2$} + 6 equ. HMPA+ 1-iodobutane system

slope = 0.80 ± 0.1
$R^2 = 0.9916$

Figure S14: A plot of log $k_{obs.}$ vs log [1-iodobutane] in Sm{N(SiMe$_3$)$_2$)$_2$} + 10 equ. HMPA+ 1-iodobutane system
Figure S15: A plot of log $k_{\text{obs.}}$ vs log [2-butanone] in Sm\{N(SiMe$_3$)$_2$\}$_2$ + 1 equ. HMPA+ 2-butanone

Figure S16: A plot of log $k_{\text{obs.}}$ vs log [2-butanone] in Sm\{N(SiMe$_3$)$_2$\}$_2$ + 2 equ. HMPA+ 2-butanone
Figure S17: A plot of log \(k_{\text{obs}} \) vs log [2-butanone] in Sm\{N(SiMe\(_3\))\(_2\)\} \(+ 6 \) equ. HMPA + 2-butanone

slope = 1.21 ± 0.12
\(R^2 = 0.9902 \)

Figure S18: A plot of log \(k_{\text{obs}} \) vs log [2-butanone] in Sm\{N(SiMe\(_3\))\(_2\)\} \(+ 10 \) equ. HMPA + 2-butanone

slope = 1.2 ± 0.10
\(R^2 = 0.9920 \)
Figure S19: A plot of VPO molality vs actual molality of biphenyl solutions in THF. R² = 0.999.

Table S1: The calculated Molecular weights and VPO generated molecular weights of [Sm{N(SiMe₃)₂}₂] and [Sm{N(SiMe₃)₂}₂]-HMPA combinations

<table>
<thead>
<tr>
<th>System</th>
<th>Molecular weight Calculated</th>
<th>VPO generated Molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Sm{N(SiMe₃)₂}₂]</td>
<td>471.13</td>
<td>479.36±24</td>
</tr>
<tr>
<td>[Sm{N(SiMe₃)₂}₂].1 HMPA</td>
<td>650.33</td>
<td>641.3±33</td>
</tr>
<tr>
<td>[Sm{N(SiMe₃)₂}₂].2 HMPA</td>
<td>829.53</td>
<td>447.86±44</td>
</tr>
</tbody>
</table>

Average MW of [Sm{N(SiMe₃)₂}₂].1HMPA+ HMPA = 414.77
Isothermal Titration Calorimetry

HMPA and [Sm{N(SiMe$_3$)$_2$}$_2$] solutions were prepared in distilled degassed THF. Calorimetric studies were carried out in a MicroCal Omega isothermal titration calorimeter at room temperature. The [Sm{N(SiMe$_3$)$_2$}$_2$] solution was placed in the 1.4 µL titration cell and the HMPA solution was loaded into a 250 µL calorimetric syringe. The instrument was modified with the appropriate inert seals and equipped with a small port capable of keeping a static inert gas (Ar) atmosphere over the sample. These instrumental changes allow for calorimetric analysis of air-sensitive compounds in organic solvents. A 50-55 injection matrix was employed with each 5 µL injection lasting a duration of 10 seconds. A three minute interval was allotted between each injection of HMPA into [Sm{N(SiMe$_3$)$_2$}$_2$].

Figure S20: ITC trace from titration of HMPA into the Sm{N[Si(CH$_3$)$_3$]$_2$}$_2$ complex in THF.