Supporting Information for

Oxidative Fragmentation of Hydroxy Octadecadienoates

Generates Biologically Active γ-Hydroxyalkenals

Mingjiang Sun and Robert G. Salomon*

Figure S1. Negative ion ESI-MS/MS spectra of 13-HPODE (2) and 9-HPODE (3) page S2

Figure S2. Negative ion ESI-MS/MS spectra of 13-HODE (9) and 9-HODE (4) page S2

Figure S3. Negative ion ESI-MS/MS spectra of 13-HPODE-d₄ (2-d₄) and internal standard page S2

Figure S4. Negative ion ESI-MS/MS of HODA-d₀ (8) and HODA-d₃ (8-d₃) page S3

Figure S5. Negative ion ESI-MS/MS spectrum of HODA methoxime derivative page S3

Figure S6. Positive ion ESI-MS/MS spectra of HPODE-PC (16) and HODE-PC (17):
(A) HPODE-PC, m/z 791 is M+H⁺, and m/z 813 is M+Na⁺, (B) HODE-PC, m/z 775 is M+H⁺, and m/z 797 is M+Na⁺. page S3

Figure S7. Positive ion ESI-MS/MS spectra of CHD derivatives of HNE and benzaldehyde page S4

Figure S8. ¹H NMR (CDCl₃, 600 MHz) spectrum of 13-HPODE-PC (81%) and 9-HPODE-PC (19%) regioisomers. page S4

Figure S9. ¹H NMR (CDCl₃, 600 MHz) spectrum of 13-HODE-PC (81%) and 9-HODE-PC (19%) regioisomers. page S5
Figure S1. Negative ion ESI-MS/MS spectra of 13-HPODE (2) and 9-HPODE (3).

Figure S2. Negative ion ESI-MS/MS spectra of 13-HODE (9) and 9-HODE (4).

Figure S3. Negative ion ESI-MS/MS spectra of 13-HPODE-d₄ (2-d₄) and internal standard.
Figure S4. Negative ion ESI-MS/MS of HODA-d₀ (8) and HODA-d₃ (8-d₃).

Figure S5. Negative ion ESI-MS/MS spectrum of HODA methoxime derivative.

Figure S6. Positive ion ESI-MS/MS spectra of HPODE-PC and HODE-PC: (A) HPODE-PC, m/z 791 is M+H⁺, and m/z 813 is M+Na⁺, (B) HODE-PC, m/z 775 is M+H⁺, and m/z 797 is M+Na⁺.
Figure S7. Positive ion ESI-MS/MS spectra of CHD derivatives of HNE and benzaldehyde.

Figure S8. 1H NMR (CDCl$_3$, 600 MHz) 13-HPODE-PC (81%) and 9-HPODE-PC (19%) regioisomers.
Figure S9. 1H NMR (CDCl$_3$, 600 MHz) 13-HODE-PC (81%) and 9-HODE-PC (19%) regioisomers.