Supporting Information

For
Structures and Ligand Exchange of N-Confused Porphyrin Dimer Complexes of Group 12 Metals

Hiroyuki Furuta,* Tatsuki Morimoto, and Atsuhiro Osuka

(A) 1H NMR spectra of 7 – 9.

(B) ORTEP drawings of 7 and 8.

(C) van’t Hoff plot for the exchange reaction of 7 and 8.

(D) 1H NMR spectra of mixture solutions of 7-8, 8-9, 9-7, and 10-7.

(E) NOE difference 1H NMR spectrum of a mixture solution of 7-8.

(F) Identification of the hetero dimer complex formed from 8 and 11.
(A) 1H NMR spectra of 7 – 9

(1) Zn(II) dimer complex of 2-aza-5,20-diphenyl-21-carbaporphyrin (7)

Supporting Figure S1. 1H NMR spectra of 7 (300 MHz, CDCl$_3$). *: hexane, **: H$_2$O, ***: CH$_2$Cl$_2$, ****: CHCl$_3$. The signals at 2.57 and –3.99 ppm are assigned to the outer CH and inner CH, respectively (see Figure 3).
(2) Cd(II) dimer complex of 2-aza-5,20-diphenyl-21-carbaporphyrin (8)

Supporting Figure S2. 1H NMR (300 MHz, CDCl$_3$) and 13C NMR (75.5 MHz, CD$_2$Cl$_2$) spectra of 8. *: hexane, **: H$_2$O, ***: CH$_2$Cl$_2$, ****: CHCl$_3$. The signals at 3.44 and -4.17 ppm in the 1H NMR are assigned to the outer CH and inner CH, respectively (see Figure 3).
(3) Hg(II) dimer complex of 2-aza-5,20-diphenyl-21-carbaporphyrin (9)

Supporting Figure S3. 1H NMR (300 MHz, CDCl$_3$) and 13C NMR (75.5 MHz, CD$_2$Cl$_2$) spectra of 9. A in the 1H NMR spectrum represents the signals assigned to the free base NCDPP (1). *: hexane, **: H$_2$O, ***: CH$_2$Cl$_2$, ****: CHCl$_3$. The signals at 3.60 and –3.27 ppm in the 1H NMR are assigned to the outer CH and inner CH, respectively (see Figure 3).
Supporting Figure S4. ORTEP drawings of Zn-dimer (7, (a)) and Cd-dimer (8, (b)).
van’t Hoff plots for the exchange reaction of 7 and 8

\[\Delta G = \Delta H - T(298 \text{ K})\Delta S \]
\[= 0.68 - 3.0 \text{ J/Kmol} = -2.3 \text{ kJ/mol} < 0 \]

\[\Delta H = 0.68 \text{ kJ/mol} > 0 \]
\[\Delta S = 10 \text{ J/Kmol} \]

Supporting Figure S5. van’t Hoff plots for the exchange reaction of 7 and 8. The negative slope indicates the positive \(\Delta H \), and the negative \(\Delta G \) results from the larger mixing entropy term (\(T\Delta S > \Delta H \)).
(D) 1H NMR spectra of the mixture solutions of 7-8, 8-9, 9-7, and 10-7

(1) Mixture solution of 7 (Zn(II) Dimer) and 8 (Cd(II) Dimer).

Supporting Figure S6. 1H NMR spectrum of a mixture solution of 7-8 (300 MHz, CDCl$_3$). *: hexane, **: H$_2$O, ***: CH$_2$Cl$_2$, ****: CHCl$_3$. The signals of the inner and outer CH are shown in Figure 4.
(2) Mixture solution of 8 (Cd(II) Dimer) and 9 (Hg(II) Dimer).

Supporting Figure S7. 1H NMR spectrum of a mixture solution of 8-9 (300 MHz, 50 °C, CDCl$_3$). *: hexane, **: H$_2$O, ***: CH$_2$Cl$_2$, ****: CHCl$_3$. A and B represent the outer CH signals of 9 and 8, respectively, and C and D the inner CH signals of 9 and 8, respectively.
(3) Mixture solution of 9 (Hg(II) Dimer) and 7 (Zn(II) Dimer).

Supporting Figure S8. 1H NMR spectrum of a mixture solution of 9-7 (300 MHz, 50 °C, CDCl$_3$). *: hexane, **: H$_2$O, ***: CH$_2$Cl$_2$, ****: CHCl$_3$. A and B represent the outer CH signals of 9 and 7, respectively, and C and D the inner CH signals of 9 and 7, respectively.
(4) Mixture solution of 10 (Zn(II) dimer complex of NCTPP) and 7 (Zn(II) dimer complex of NCDPP).

Supporting Figure S9. 1H NMR spectrum of a mixture solution of 10-7 (300 MHz, CDCl$_3$). *: hexane, **: H$_2$O, ***: CH$_2$Cl$_2$, ****: CHCl$_3$. A and B represent the outer CH signals of 10 and 7, respectively, and C and D the inner CH signals of 10 and 7, respectively.
E) NOE difference 1H NMR spectrum of a mixture solution of 7-8

Supporting Figure S10. NOE difference 1H NMR spectrum obtained after irradiation of the resonance at 2.50 ppm (outer CH proton (H2) of the Cd-I). The enhancement of the resonance at 3.46 ppm (outer CH proton (H4) of the Zn-I) was observed. In the case of homo-dimers, the closest outer CH carbons are separated by less than 4 Å in the solids.
Identification of the hetero dimer complex formed from 8 and 11.

Supporting Figure S11. 1H NMR spectra of the hetero dimer complex formed from 8 ((Cd—1)$_2$) and 11 ((Zn—2)$_2$), (Zn—1)(Cd—1), and (Zn—2)(Cd—2). For the three hetero dimer complexes, H1 represents the signal of inner CH close to Cd, and H3 represents that close to Zn. By comparing the chemical shifts, it is suggested that the hetero dimer complex from 8 ((Cd—1)$_2$) and 11 ((Zn—2)$_2$) is composed of (Cd—1) and (Zn—2), which supports the mechanism shown in scheme 3(c).