APPENDIX

Calculation of Meniscus, Pressures, and Frequency Shift Due to Partial Wetting of a Sinusoidally Corrugated Surface

The surface is assumed to vary sinusoidally in one direction with periodicity Λ and amplitude A:

$$y = A \cos(kx) \quad (A1)$$

where $k = 2\pi/\Lambda$. At equilibrium, a cylindrical liquid/air meniscus is formed. For minimum surface area, the meniscus is assumed to be circular in cross section, with radius r and centered at (x_c, y_c), as shown in Fig. A1 (a and b). The meniscus makes contact with the surface at (x_l, y_l) at an angle θ determined by the surface condition. We solve for the meniscus parameters—surface intersection point (x_l, y_l), radius r, and center (x_c, y_c)—in terms of x_l. We next express the capillary pressure and compression pressure of the trapped air bubble in terms of x_l. We then find x_l such that the contact angle and pressure constraints are satisfied.

Liquid/Air Meniscus Calculation

The meniscus calculation is divided into two subcases: $\theta \leq \pi/2$ and $\pi/2 < \theta < (\pi - \phi)$, where θ and ϕ are defined in Fig. A1 (a and b).

(a) $\theta \leq \pi/2$. Referring to Fig. A1 (a), the meniscus contacts the surface at point (x_l, y_l) at an angle θ. The tangent line to the surface at this point, T, has a slope m given by:

$$m = \frac{dy}{dx} = -Ak \sin(kx_l). \quad (A2)$$

Noting that $\tan(\phi) = -\frac{dy}{dx}$, we can solve for ϕ in terms of x_l:

$$\phi = \tan^{-1}[Ak \sin(kx_l)]. \quad (A3)$$

Since $\theta + \phi + \psi = \pi/2$, we can solve for ψ:

$$\psi = \frac{\pi}{2} - \theta - \tan^{-1}[Ak \sin(kx_l)]. \quad (A4)$$

Then the meniscus is an arc of a circle with radius r, given by
\[r = \frac{x_c - x_1}{\cos(\psi)} \] \hspace{1cm} (A5)

centered at \((x_c, y_c)\), where \(x_c = \pi/k = \Lambda/2\) and \(y_c = y_1 + (x_c - x_1) \tan(\psi)\).

(b) \(\pi/2 < \theta < (\pi - \phi)\): The angle \(\phi\) remains the same as in case (a). We introduce an angle \(\alpha\) between the tangent line \(T\) and the radius \(r\), as shown in Fig. A1 (b).

\[\alpha = (\theta - \frac{\pi}{2}) \] \hspace{1cm} so that \hspace{1cm} (A6)

\[r = \frac{x_c - x_1}{\cos(\phi + \alpha)} \] \hspace{1cm} and \hspace{1cm} (A7)

\[y_c = y_1 - (x_c - x_1) \tan(\phi + \alpha) \] \hspace{1cm} and \hspace{1cm} \(x_c = \pi/k = \Lambda/2\) as before. \hspace{1cm} (A8)

Gas Bubble Pressure

Capillary pressure: The capillary pressure of the gas under the meniscus is:

\[P_1 = \frac{1}{r_1} + \frac{1}{r_2} = \frac{\gamma}{r} \] \hspace{1cm} (A9)

where \(\gamma\) is the surface tension of the liquid; \(r_1\) and \(r_2\) are the meniscus radii on the \(xy\) and \(yz\) planes, respectively. Since the bubble is assumed cylindrical (unvarying in the \(z\) direction), \(r_2 \rightarrow \infty\) and the equation simplifies to:

\[P_1 = \frac{\gamma}{r} \] \hspace{1cm} \hspace{1cm} (A10)

where \(r\) is given by Eqs. A5 and A7.

Compression pressure: Assuming air initially lying below the corrugation peaks (cross-sectional area per period \(A_1\)) is compressed to the region below the meniscus (cross-sectional area per period \(A_2\)), then assuming conservation of gas molecules (constant \(PV\)) gives:

\[P_2 = P_0 \left(\frac{A_1}{A_2} - 1 \right) \] \hspace{1cm} (A11)

where \(P_0\) is the ambient air pressure and the cross-sectional areas are calculated as follows.

The initial cross-section of the gas pocket is:
\[A_i = 2A \int_0^{\pi/k} [1 - \cos(kx)] dx = AA. \] (A12)

The area (per period) between the circular meniscus and sinusoidal surface can be divided into two contributions: \(A_2 = A_{2A} + A_{2B} \), where \(A_{2A} \) is the area under the meniscus but above the horizontal line \(H \) and \(\theta' \) is defined in fig A1 (a):

\[A_{2A} = \frac{r^2}{2} \left[\theta' - \sin(\theta') \right] \] (A13)

with

\[\theta' = 2 \tan^{-1} \left(\frac{x - x_i}{y - y_c} \right) \quad \text{for} \; y > y_c \quad \text{or} \quad (A14a) \]

\[\theta' = \pi \quad \text{for} \; y = y_c \quad \text{or} \quad (A14b) \]

\[\theta' = 2\pi - 2 \tan^{-1} \left(\frac{x - x_i}{y - y_c} \right) \quad \text{for} \; y < y_c; \quad (A14c) \]

and \(A_{2B} \) is the area between line \(H \) and the sinusoidal surface:

\[A_{2B} = 2 \int_{x_i}^{x_c} \left[y_1 - A \cos(kx) \right] dx = 2A \left[(x_c - x_i) \cos(kx_i) + \frac{1}{k} \sin(kx_i) \right]. \] (A15)

To determine the meniscus parameters, we iteratively find \(x_1 \) \((0 < x_i < x_c) \) such that \(P_1 = P_2 \), noting that both \(P_1 \) and \(P_2 \) are dependent upon \(x_1 \). With a sinusoidal surface, this uniquely determines a meniscus.

Frequency shift due to partial wetting

The frequency shift caused by trapped and entrained fluid is:

\[\Delta f = -\frac{2f_s^2 \rho}{N(\rho_q \mu_q)^{1/2}} \left(d + \frac{\delta}{2} \right) \] (A16)

where \(d \) is the effective thickness of trapped fluid and \(\delta \) is the decay length in the fluid (Eq. 2).

For partial wetting of a sinusoidal surface, the effective thickness of trapped fluid is:

\[d = \left(\frac{A_i - A_x}{\Lambda} \right) \] (A17)
where A_1 and A_2 are the cross-sectional areas calculated above.

Substituting Eq. A17 into Eq. A16 gives the frequency shift due to partial wetting of the sinusoidal surface:

$$-\frac{\Delta f}{\rho} = \frac{2f^2}{N}\left[\frac{A_1 - A_2}{\Lambda} + \left(\frac{\delta}{2}\right)\right]$$ \hspace{1cm} (A18)

Appendix Fig. 1A

Appendix Fig. 1A: Illustration of geometric variables for the liquid/air meniscus calculation; a) $\theta \leq \pi/2$ case and b) $\pi/2 < \theta < (\pi - \phi)$ case.