Cross-Coupling of Alkynylsilanols with Aryl Halides Promoted by Potassium Trimethylsilylolate

Scott E. Denmark* and Steven A. Tymonko

Roger Adams Laboratory, Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois, 61801

SUPPORTING INFORMATION

Table of Contents

General Experimental ... S1
Response Factors .. S3
Procedure for Preparation of Alkynylsilanols S4
Competition Studies of Alkynylsilicon Compounds S6
Cross-Coupling of Dimethyl(1-heptynyl)silanol with Aryl Iodides S10
References .. S26

General Experimental

All reactions were performed in oven-dried (140 °C) or flame-dried glassware under an inert atmosphere of dry argon. DME was distilled from Na and benzophenone. Brine refers to a saturated aqueous solution of NaCl. Commercial reagents were purified by distillation or recrystallization prior to use.

Analytical thin-layer chromatography was performed on Merck silica or aluminum oxide, basic gel plates with QF-254 indicator. Visualization was accomplished with UV light and/or KMnO₄ solution. Diethyl ether was of reagent grade and used as received; other solvents for chromatography and filtration were technical grade and distilled from the indicated drying agents: hexane and pentane (CaCl₂); ethyl acetate (K₂CO₃).
1H NMR spectra and 13C NMR spectra were recorded on 500 MHz, 1H (126 MHz, 13C) spectrometers. Spectra are referenced to residual chloroform (δ 7.26 ppm, 1H; δ 77.0 ppm, 13C) and residual benzene (δ 7.16 ppm, 1H; δ 128.0 ppm, 13C). Chemical shifts are reported in ppm (δ); multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Coupling constants, J, are reported in Hertz. All 1H and 13C NMR assignments are corroborated by 2D experiments (HETCOR and COSY). Spectra available on request from denmark@scs.uiuc.edu.

Electron impact mass spectroscopy (EI) was performed at 70 eV and chemical ionization (CI) spectra were obtained using methane as the carrier gas. Data are reported in the form of m/z (intensity relative to base peak = 100). Infrared spectra (IR) peaks are reported in cm$^{-1}$ with indicated relative intensities: s (strong, 67-100%); m (medium, 34-66%); w (weak, 0-33%). Analytical capillary gas chromatography (GC) was performed using a gas chromatograph fitted with a flame ionization detector (H$_2$ carrier gas, 1 mL/min). GC Method 1: Injections were made onto a Hewlett-Packard HP-5 50-m cross-linked 5%-phenyl methyl silicone gum phase column. The detector temperature was 300 °C. The column oven temperature program is as follows: 125 °C for 4 minutes, 125 °C to 250 °C ramp at 50 °C/minute, 250 °C for 6 minutes. Total run time is 12.5 minutes. Retention times (t_R) and integrated ratios were obtained from reporting integrators. Bulb-to-bulb distillations were performed on a Kugelrohr; boiling points (bp) corresponding to uncorrected air-bath temperatures (ABT).
Response Factors

Response factors (R_f) for quantitative GC analysis for GC Method 1 were obtained by the equation below:

Eq1: \[R_f = \frac{\text{area } A \times \text{mmol biphenyl}}{\text{mmol } A \times \text{area biphenyl}} \]

<table>
<thead>
<tr>
<th>mmol biphenyl</th>
<th>Area biphenyl</th>
<th>mmol 3a</th>
<th>Area 3a</th>
<th>Response factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0492</td>
<td>27437</td>
<td>0.0395</td>
<td>11542</td>
<td>0.524</td>
</tr>
<tr>
<td>0.0492</td>
<td>28707</td>
<td>0.0395</td>
<td>12971</td>
<td>0.563</td>
</tr>
<tr>
<td>0.0492</td>
<td>17569</td>
<td>0.0395</td>
<td>8831</td>
<td>0.626</td>
</tr>
<tr>
<td>0.0182</td>
<td>45830</td>
<td>0.0213</td>
<td>35817</td>
<td>0.668</td>
</tr>
<tr>
<td>0.0182</td>
<td>43337</td>
<td>0.0213</td>
<td>40701</td>
<td>0.802</td>
</tr>
<tr>
<td>0.0182</td>
<td>25151</td>
<td>0.0213</td>
<td>22347</td>
<td>0.759</td>
</tr>
<tr>
<td>0.0253</td>
<td>24665</td>
<td>0.0326</td>
<td>27534</td>
<td>0.866</td>
</tr>
<tr>
<td>0.0253</td>
<td>30122</td>
<td>0.0326</td>
<td>28639</td>
<td>0.738</td>
</tr>
<tr>
<td>0.0253</td>
<td>35994</td>
<td>0.0326</td>
<td>35740</td>
<td>0.770</td>
</tr>
<tr>
<td>Avg:</td>
<td></td>
<td></td>
<td></td>
<td>0.701</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mmol biphenyl</th>
<th>Area biphenyl</th>
<th>mmol 4-iodoanisole</th>
<th>Area 4-iodoanisole</th>
<th>Response factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0389</td>
<td>20906</td>
<td>0.0406</td>
<td>7468</td>
<td>0.342</td>
</tr>
<tr>
<td>0.0389</td>
<td>34354</td>
<td>0.0406</td>
<td>13373</td>
<td>0.373</td>
</tr>
<tr>
<td>0.0389</td>
<td>22427</td>
<td>0.0406</td>
<td>7699</td>
<td>0.329</td>
</tr>
<tr>
<td>0.0175</td>
<td>5928</td>
<td>0.0256</td>
<td>2957</td>
<td>0.341</td>
</tr>
<tr>
<td>0.0175</td>
<td>9665</td>
<td>0.0256</td>
<td>5319</td>
<td>0.376</td>
</tr>
<tr>
<td>0.0175</td>
<td>14950</td>
<td>0.0256</td>
<td>8801</td>
<td>0.402</td>
</tr>
<tr>
<td>0.0454</td>
<td>51497</td>
<td>0.0607</td>
<td>26561</td>
<td>0.463</td>
</tr>
<tr>
<td>0.0454</td>
<td>9996</td>
<td>0.0607</td>
<td>5594</td>
<td>0.502</td>
</tr>
<tr>
<td>0.0454</td>
<td>49790</td>
<td>0.0607</td>
<td>28626</td>
<td>0.516</td>
</tr>
<tr>
<td>Avg:</td>
<td></td>
<td></td>
<td></td>
<td>0.386</td>
</tr>
</tbody>
</table>
Preparation of Dimethyl-(1-heptynyl)silanol (2)

To an oven-dried, 250-mL round-bottom flask equipped with a magnetic stir bar was added 1-heptyne (7.87 mL, 60.0 mmol) and 50 mL of anhydrous ether. The resulting solution was cooled to -75 °C. To the solution was slowly added n-butyllithium (1.55 M in hexane, 38.7 mL, 60.0 mmol, 1.0 equiv) and the solution stirred for 90 min at the same temperature. Chlorodimethylsilane (20.0 mL, 0.18 mol, 3.0 equiv) was added and the solution was allowed to warm to room temperature over 2 hours. The reaction mixture was quenched with 10 mL of water then was extracted with water (20 mL). The aqueous phase was back-extracted with 2 x 20 mL of ether. The combined organics were washed with brine (20 mL) and then were dried over MgSO_4. The volatile solvents were removed in vacuo to provide a yellow oil. The oil was taken up in 5 mL of hexanes and then was purified by silica gel chromatography (60 mm x 30 cm) using hexanes to afford the intermediate silane, (8.70 g, 94%) as an colorless oil.

To a 250-mL, round-bottom flask equipped with a magnetic stir bar was added the intermediate silane (11.40 g, 73.8 mmol), 300 mL of acetonitrile, and water (2.66 mL, 147.6 mmol, 2.0 equiv). To the resulting solution was added [RuCl_2(p-cymene)]_2 (900 mg, 1.47 mmol, 0.02 equiv). The solution was stirred at room temperature open to the atmosphere for 10 min. The volatile solvents were then was removed in vacuo to provide a red oil. The oil was taken up in 20 mL of hexanes and then was purified by silica gel chromatography (30 mm x 30 cm) using
hexanes/ethyl acetate, 5/1 to produce a colorless oil. Short-path distillation (100 °C, 1.0 mmHg)
afforded 10.58 g (84%) of dimethyl(1-heptynyl)silanol as a colorless oil.

Analytical Data for 2

Data for Dimethyl(1-heptynyl)silanol (2):

bp: 100 °C (1.0 mmHg, ABT)

1H NMR: (500 MHz, CHCl$_3$)

2.22 (t, J = 7.5, 2 H, H_2C(3)), 2.04 (s, 1 H, -OH), 1.52 (pent, J = 7.5, 2 H, H_2C(4)),
1.30-1.36 (m, 4 H, H_2C(5 and 6)), 0.90 (t, J = 7, 3 H, H_3C(7)), 0.27 (s, 6 H,
H_3C(1'))

13C NMR: (126 MHz, CHCl$_3$)

107.87 (C(1)), 83.34 (C(2)), 30.97 (C(5)), 28.06 (C(4)), 22.11 (C(6)), 19.62
(C(3)), 13.90 (C(7)), 1.61 (C(1'))

IR: (neat)

3291 (s), 2960 (s), 2935 (s), 2862 (s), 2176 (s), 1467 (m), 1429 (m), 1253 (s),
1049 (m), 900, (s), 830, (s), 787 (s)

MS: (EI, 70 ev)

155 (M-15, 100), 98 (12), 85 (11), 75 (54), 61 (15)

TLC: R_f 0.07 (hexane/EtOAc, 19/1) [silica gel, KMnO$_4$]

Analysis: C$_{17}$H$_{18}$ (222.32)

Calcd: C, 63.47; H, 10.65%

Found: C, 63.21; H, 10.85%
General Procedure I: Competition Study of Palladium-Catalyzed Cross-Coupling of Alkynylsilicon Compounds with 4-Iodoanisole

To an oven-dried, 5-mL, round-bottom flask equipped with a magnetic stir bar was added 128.2 mg (1.0 mmol, 2.0 equiv) of potassium trimethylsilanolate under a dry argon atmosphere. To this was added sequentially copper(I) iodide (4.8 mg, 0.025 mmol, 0.05 equiv), biphenyl (49.9 mg), 1 mL of DME, dimethyl(1-heptynyl)silanol (93.7 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and PdCl$_2$(PPh$_3$)$_2$ (8.6 mg, 0.0125 mmol, 0.025 equiv). The progress of the reaction was monitored by GC as follows: an aliquot of the reaction mixture was filtered through a small amount of silica gel with EtOAc and was analyzed by GC method 1.

Table 1, entry 1

Following General Procedure I, potassium trimethylsilanolate (128.2 mg, 1.0 mmol, 2.0 equiv.), biphenyl (50.5 mg), 1 mL DME, 1-heptyne (52.9 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and PdCl$_2$(PPh$_3$)$_2$ (8.6 mg, 0.0125 mmol, 0.025 equiv) were combined and stirred at rt for 3 h. An aliquot of the mixture was analyzed by GC Method 1: 4-iodoanisole, t_R 7.28 min (8608, 90%), 3a, t_R 9.78 min (947, 2%).

Table 1, entry 2

Following General Procedure I, potassium trimethylsilanolate (128.2 mg, 1.0 mmol, 2.0 equiv.), biphenyl (50.5 mg), 1 mL DME, 1-trimethylsilyl-1-heptyne (92.6 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and PdCl$_2$(PPh$_3$)$_2$ (8.6 mg, 0.0125 mmol,
0.025 equiv) were combined and stirred at rt for 3 h. An aliquot of the mixture was analyzed by GC Method 1: 4-iodoanisole, \(t_R \) 7.28 min (4533, 106\%), 3a, \(t_R \) 9.78 min (0, 0\%).

Table 1, entry 3

Following General Procedure I, potassium trimethylsilanolate (128.2 mg, 1.0 mmol, 2.0 equiv.), biphenyl (48.8 mg), 1 mL DME, dimethyl(1-heptynyl)silanol (93.7 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and \(\text{PdCl}_2(\text{PPh}_3)_2 \) (8.6 mg, 0.0125 mmol, 0.025 equiv) were combined and stirred at rt for 3 h. An aliquot of the mixture was analyzed by GC Method 1: 4-iodoanisole, \(t_R \) 7.28 min (1687, 24\%), 3a, \(t_R \) 9.78 min (3131, 25\%).

Table 1, entry 4

Following General Procedure I, potassium trimethylsilanolate (128.2 mg, 1.0 mmol, 2.0 equiv.), copper(I) iodide (4.8 mg, 0.025 mmol, 0.05 equiv), biphenyl (50.4 mg), 1 mL DME, 1-heptyne (52.9 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and \(\text{PdCl}_2(\text{PPh}_3)_2 \) (8.6 mg, 0.0125 mmol, 0.025 equiv) were combined and stirred at rt for 3 h. An aliquot of the mixture was analyzed by GC Method 1: 4-iodoanisole, \(t_R \) 7.28 min (14175, 118\%), 3a, \(t_R \) 9.78 min (1051, 14\%).

Table 1, entry 5

Following General Procedure I, potassium trimethylsilanolate (128.2 mg, 1.0 mmol, 2.0 equiv.), copper(I) iodide (4.8 mg, 0.025 mmol, 0.05 equiv), biphenyl (47.0 mg), 1 mL DME, 1-trimethylsilyl-1-heptyne (92.6 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and \(\text{PdCl}_2(\text{PPh}_3)_2 \) (8.6 mg, 0.0125 mmol, 0.025 equiv) were combined and stirred at rt
for 3 h. An aliquot of the mixture was analyzed by GC Method 1: 4-iodoanisole, t_R 7.28 min (14908, 113%), 3a, t_R 9.78 min (1519, 16%).

Table 1, entry 6

Following General Procedure I, potassium trimethylsilanolate (128.2 mg, 1.0 mmol, 2.0 equiv.), (I) iodide (4.8 mg, 0.025 mmol, 0.05 equiv), biphenyl (49.9 mg), 1 mL DME, dimethyl(1-heptynyl)silanol (93.7 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and PdCl$_2$(PPh$_3$)$_2$ (8.6 mg, 0.0125 mmol, 0.025 equiv) were combined and stirred at rt for 3 h. An aliquot of the mixture was analyzed by GC Method 1: 4-iodoanisole, t_R 7.28 min (0, 0%), 3a, t_R 9.78 min (46517, 99%).

Table 1, entry 7

Following General Procedure I, tetrabutylammonium fluoride (315 mg, 1.0 mmol, 2.0 equiv.), biphenyl (49.2 mg), 1 mL DME, 1-heptyne (52.9 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and PdCl$_2$(PPh$_3$)$_2$ (8.6 mg, 0.0125 mmol, 0.025 equiv) were combined and stirred at rt for 3 h. An aliquot of the mixture was analyzed by GC Method 1: 4-iodoanisole, t_R 7.28 min (3105, 82%), 3a, t_R 9.78 min (1196, 17%).

Table 1, entry 8

Following General Procedure I, tetrabutylammonium fluoride (315 mg, 1.0 mmol, 2.0 equiv.), biphenyl (49.6 mg), 1 mL DME, 1-trimethylsilyl-1-heptyne (92.6 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and PdCl$_2$(PPh$_3$)$_2$ (8.6 mg, 0.0125 mmol,
0.025 equiv) were combined and stirred at rt for 3 h. An aliquot of the mixture was analyzed by GC Method 1: 4-iodoanisole, t_R 7.28 min (7212, 83%), 3a, t_R 9.78 min (3526, 22%).

Table 1, entry 9

Following General Procedure I, tetrabutylammonium fluoride (315 mg, 1.0 mmol, 2.0 equiv.), biphenyl (51.3 mg), 1 mL DME, dimethyl(1-heptynyl)silanol (93.7 mg, 0.55 mmol, 1.1 equiv), 4-iodoanisole (117.0 mg, 1.0 mmol, 1.0 equiv), and PdCl$_2$(PPh$_3$)$_2$ (8.6 mg, 0.0125 mmol, 0.025 equiv) were combined and stirred at rt for 3 h. An aliquot of the mixture was analyzed by GC Method 1: 4-iodoanisole, t_R 7.28 min (4218, 42%), 3a, t_R 9.78 min (8459, 47%).
General Procedure II: Cross-Coupling of Dimethyl(1-heptynyl)silanol (2) with Aryl Iodides. Preparation of 1-(1-Heptynyl)-4-methoxybenzene (3a)\(^1\)

![Chemical structure of 2 and 3a](image)

To an oven-dried, 10-mL, round-bottom flask equipped with a magnetic stir bar was added 256.0 mg (2.0 mmol, 2.0 equiv) of potassium trimethylsilanolate under a dry argon atmosphere. To this was added sequentially copper(I) iodide (9.6 mg, 0.05 mmol, 0.05 equiv), 2 mL of DME, dimethyl(1-heptynyl)silanol (187.0 mg, 1.1 mmol, 1.1 equiv), 4-iodoanisole (234.0 mg, 1.0 mmol, 1.0 equiv), and PdCl\(_2\)(PPh\(_3\))\(_2\) (17.2 mg, 0.025 mmol, 0.025 equiv). The resulting solution was stirred at room temperature for 3 h under a dry argon atmosphere. The reaction mixture was then filtered through a silica plug (3 g) with 75 mL of anhydrous Et\(_2\)O. The volatile solvents were removed in vacuo to afford a yellow oil. The oil was taken up in 3 mL of ether and then was purified by silica gel column chromatography (30 mm x 30 cm) using pentane/ether, 19/1 to give a pale yellow oil. Bulb-to-bulb distillation (ABT 150 °C, 1.0 mmHg) afforded 191 mg (95%) of 3a as a colorless oil.

Data for 1-(1-Heptynyl)-4-methoxy-benzene (3a):

bp: 150 °C (1.0 mmHg, ABT)

\(^1\)H NMR: (500 MHz, CHCl\(_3\))

7.26 (dd, \(J = 2, 7, 2\) H, 2 x HC(3')), 6.75(dd, \(J = 2, 7, 2\) H, 2 x HC(2')), 3.74 (s, 3 H, H\(_3\)C(5')), 2.32 (t, \(J = 7.5, 2\) H, H\(_2\)C(3)), 1.52 (pent, \(J = 7.5, 2\) H, H\(_2\)C(4)), 1.27-1.35 (m, 4 H, H\(_2\)C(5 and 6)), 0.86 (t, \(J = 7.5, 3\) H, H\(_3\)C(7))
\(^{13}\text{C NMR:} \) \((126\,\text{MHz, CHCl}_3)\)

159.21 (C(4’)), 133.10 (C(2’)), 116.49 (C(3’)), 114.03 (C(1’)), 89.07 (C(1)), 80.42 (C(2)), 55.48 (C(5’)), 31.36 (C(5)), 28.80 (C(4)), 22.47 (C(6)), 19.60 (C(3)), 14.24 (C(7))

\(\text{GC:} \quad t_R\ 9.35\ \text{min (HP-5, 15 psi, 175}^\circ\text{C for 7 min, 25}^\circ\text{C/min to 225}^\circ\text{C)} \)

Preparation of 1-Phenyl-1-heptyne (3b) (Table 2, entry 2)

Following General Procedure II, iodobenzene (408 mg, 2.00 mmol) was combined with potassium trimethylsilanolate (512 mg, 4.00 mmol, 2.0 equiv), copper(I) iodide (19 mg, 0.10 mmol, 0.05 equiv), 4 mL of DME, dimethyl(1-heptynyl)silanol (375 mg, 2.2 mmol, 1.1 equiv), and PdCl\(_2\)(PPh\(_3\))\(_2\) (35 mg, 0.05 mmol, 0.025 equiv). The product 3b was obtained as a colorless oil in 93% yield (320 mg).

Analytical data for 1-Phenyl-1-heptyne (3b)

\(^1\text{H NMR:} \) \((500\,\text{MHz, CHCl}_3)\)

7.39-7.40 (m, 2 H), 7.25-7.38 (m, 3H), 2.40 (t, \(J = 7.0, 2\ H, H_2\text{C(3)} \)), 1.61 (pent, \(J = 7.5, 2\ H, H_2\text{C(4)} \)), 1.33-1.42 (m, 4 H, \(H_2\text{C(5 and 6)} \)), 0.92 (t, \(J = 7.0\ 3\ H, H_3\text{C(7)} \))
Preparation of 1-(1-Heptynyl)naphthalene (3c) (Table 2, entry 3)

Following General Procedure II, 1-iodonaphthalene (508 mg, 2.00 mmol) was combined with potassium trimethylsilanolate (512 mg, 4.00 mmol, 2.0 equiv), copper(I) iodide (19 mg, 0.10 mmol, 0.05 equiv), 4 mL of DME, dimethyl(1-heptynyl)silanol (375 mg, 2.2 mmol, 1.1 equiv), and PdCl$_2$(PPh$_3$)$_2$ (35 mg, 0.05 mmol, 0.025 equiv). The product 3c was obtained as a colorless oil in 87% yield (385 mg).

Data for 1-(1-Heptynyl)naphthalene (3c):

bp: 160 0C (0.5 mmHg, ABT)

1H NMR: (500 MHz, CHCl$_3$)

8.37 (d, $J = 8.5$, 1 H, HC(8’)), 7.84 (d, $J = 8.5$, 1 H, HC(2’)), 7.79 (d, $J = 8.5$, 1 H, HC(5’)), 7.64 (d, $J = 7.5$, 1 H, HC(4’)), 7.57 (t, $J = 7.5$, 1 H, HC(7’)), 7.51 (t, $J = 7.5$, 1 H, HC(6’)), 7.41 (t, $J = 7.5$, 1 H, HC(3’)), 2.59 (t, $J = 7.0$, 2 H, H$_2$C(3)), 1.74 (pent, $J = 7.5$, 2 H, H$_2$C(4)), 1.54 (pent, $J = 7.5$, 2 H, H$_2$C(5)), 1.42 (pent, $J = 7.5$, 2 H, H$_2$C(6)), 0.97 (t, $J = 7.0$, 3 H, H$_3$C(7))

13C NMR: (126 MHz, CHCl$_3$)

133.5 (C(9’)), 133.2 (C(10’)), 130.0 (C(2’)), 128.2 (C(4’)), 127.8 (C(5’)), 126.4 (C(6’)), 126.3 (C(8’)), 126.2 (C(7’)), 125.2 (C(3’)), 121.8 (C(1’)), 95.6 (C(1)), 78.5 (C(2)), 31.2 (C(5)), 28.6 (C(4)), 22.4 (C(6)), 19.7 (C(3)), 14.0 (C(7))
IR: (neat)
3058 (s), 2931 (s), 2859 (s), 2222 (m), 1928 (w,b), 1586 (s), 1463 (s), 1395 (s), 1328 (m), 1016 (m), 798 (s), 773 (s)

MS: (EI, 70 ev)
222 (M\(^+\), 38), 193 (25), 179 (30), 178 (24), 167 (34), 166 (19), 165 (100), 164 (20), 163 (26), 152 (22), 139 (12)

TLC: \(R_f \) 0.52 (hexane/EtOAc, 19/1) [silica gel, KMnO\(_4\)]

GC: \(t_R \) 12.40 min (HP-5, 15 psi, 175 \(^\circ\)C for 7 min, 25 \(^\circ\)C/min to 225 \(^\circ\)C)

Analysis: \(C_{17}H_{18} \) (222.32)
Calcd: C, 91.84; H, 8.16%
Found: C, 91.83; H, 8.21%

Preparation of 4-(1-Heptynyl)benzonitrile (3d) (Table 2, entry 4)

Following General Procedure II, 4-iodobenzonitrile (229 mg, 1.00 mmol) was combined with potassium trimethylsilanolate (256 mg, 2.00 mmol, 2.0 equiv), copper(I) iodide (9.6 mg, 0.05 mmol, 0.05 equiv), 2 mL of DME, dimethyl(1-heptynyl)silanol (187 mg, 1.1 mmol, 1.1 equiv), and PdCl\(_2\)(PPh\(_3\))\(_2\) (17.2 mg, 0.025 mmol, 0.025 equiv). The product 3d was obtained as a colorless oil in 83% yield (176 mg).
Data for 4-(1-Heptynyl)benzonitrile (3d):

bp: \(150^\circ\text{C} (0.5\ \text{mmHg, ABT})\)

\(^1\text{H NMR:}\) (500 MHz, CHCl\(_3\))

7.56 (dd, \(J = 2, 6.5, 2\ H, 2 \times \text{HC(3')}, 6.75 (dd, \ J = 2, 7, 2\ H, 2 \times \text{HC(2')}, 2.42 (t, \ J = 7.5, 2\ H, \text{H}_2\text{C(3)}), 1.61 (\text{pent, } J = 7.0, 2\ H, \text{H}_2\text{C(4)}), 1.25-1.44 (m, 4\ H, \text{H}_2\text{C(5 and 6)}), 0.93 (t, J = 7.0, 3\ H, \text{H}_3\text{C(7)})

\(^{13}\text{C NMR:}\) (126 MHz, CHCl\(_3\))

132.3 (C(3')), 132.1 (C(2')), 129.4 (C(1')), 118.8 (CN), 111.0 (C(4')), 95.9 (C(1)), 79.6 (C(2)), 31.3 (C(5)), 28.3 (C(4)), 22.4 (C(6)), 19.7 (C(3)), 14.1 (C(7))

IR: (neat)

2932 (s), 2860 (s), 2227 (s), 1921 (w,b), 1604 (s), 1500 (s), 1466 (s), 1428 (m), 1405 (m), 1330 (m), 1176 (s), 839 (s)

MS: (EI, 70 ev)

197 (M\(^+\), 32), 182, (16), 169 (19), 168 (100), 167 (12), 156 (12), 155 (39), 154 (54), 153 (28), 143 (15), 142 (43), 141 (41), 140 (95), 128 (18), 127 (44), 116 (20), 115 (21), 114 (21), 113 (27), 81 (22), 76 (10), 63 (20) 56 (24)

TLC: \(R_f\ 0.31\) (hexane/EtOAc, 19/1) [silica gel, KMnO\(_4\)]

GC: \(t_R\ 12.40\ \text{min (HP-5, 15 psi, 175}^\circ\text{C for 7 min, 25}^\circ\text{C/min to 225}^\circ\text{C)}\)

Analysis: \(\text{C}_{14}\text{H}_{15}\text{N (197.28)}\)

Calcd: C, 85.24; H, 7.66 N, 7.10%

Found: C, 85.12; H, 7.72 N, 7.18%
Preparation of 1-(1-Heptynyl)-4-methylbenzene (3e) (Table 2, entry 5)

Following General Procedure II, 4-iodotoluene (218 mg, 1.00 mmol) was combined with potassium trimethylsilanolate (256 mg, 2.00 mmol, 2.0 equiv), copper(I) iodide (9.6 mg, 0.05 mmol, 0.05 equiv), 2 mL of DME, dimethyl(1-heptynyl)silanol (187 mg, 1.1 mmol, 1.1 equiv), and PdCl$_2$(PPh$_3$)$_2$ (17.2 mg, 0.025 mmol, 0.025 equiv). The product 3e was obtained as a colorless oil in 91% yield (169 mg).

Data for 1-(1-Heptynyl)-4-methylbenzene (3e):

bp: 150 °C (0.5 mmHg, ABT)

1H NMR: (500 MHz, CHCl$_3$)

7.29 (d, $J = 8.0$, 2 H, 2 x HC(2')), 7.08 (d, $J = 7.5$, 2 H, 2 x HC(3')), 2.39 (t, J = 7.0, 2 H, H$_2$C(3)), 2.33 (s, 3 H, H$_3$C(5')), 1.61 (pent, $J = 7.5$, 2 H, H$_2$C(4)), 1.34-1.46 (m, 4 H, H$_2$C(5 and 6), 0.93 (t, $J = 7.5$, 3 H, H$_3$C(7))

13C NMR: (126 MHz, CHCl$_3$)

137.1 (C(4')), 131.1 (C(2')), 128.7 (C(3')), 120.7 (C(1')), 89.4 (C(1)), 80.3 (C(2)), 30.8 (C(5)), 28.2 (C(4)), 21.9 (C(6)), 21.1 C(5')), 19.1 (C(3)), 13.7 (C(7))

IR: (neat)

2957 (s), 2932 (s), 2860 (s), 2200 (w), 1701 (w), 1509 (s), 1466 (s), 1106 (w)
MS: (EI, 70 ev)

186 (M⁺, 63), 171 (12), 158 (12), 157 (54), 145 (12), 144 (18), 143 (41), 142 (29), 141 (15), 131 (66), 130 (15), 129 (100), 128 (42), 127 (16), 116 (16), 115 (30), 105 (16), 91 (15), 77 (12)

TLC: \(R_f \) 0.55 (hexane/EtOAc, 19/1) [silica gel, KMnO₄]

GC: \(t_R \) 10.00 min (HP-5, 15 psi, 125°C for 4 min, 50°C/min to 250°C)

Analysis: C₁₄H₁₈ (186.29)

Calcd: C, 90.26; H, 9.74%

Found: C, 90.33; H, 9.82%

Preparation of 1-(1-Heptynyl)-4-nitrobenzene (3f) (Table 2, entry 6)

Following General Procedure II, 4-iodonitrobenzene (498 mg, 2.00 mmol) was combined with potassium trimethylsilanolate (512 mg, 4.00 mmol, 2.0 equiv), copper(I) iodide (19 mg, 0.10 mmol, 0.05 equiv), 4 mL of DME, dimethyl(1-heptynyl)silanol (375 mg, 2.2 mmol, 1.1 equiv), and PdCl₂(PPh₃)₂ (35 mg, 0.05 mmol, 0.025 equiv). The product 3f was obtained as a bright yellow oil in 75% yield (328 mg).

Data for 1-(1-Heptynyl)-4-nitrobenzene (3f):

bp: 155°C (0.1 mmHg, ABT)
1H NMR: (500 MHz, CHCl$_3$)

8.15 (dd, $J = 2.5, 8.5$, 2 H, 2 x HC(3')), 7.50 (dd, $J = 2.5, 7.5$, 2 H, 2 x HC(2')), 2.42 (t, $J = 7.0$, 2 H, H$_2$C(3)), 1.61 (pent, $J = 7.0$, 2 H, H$_2$C(4)), 1.34-1.45 (m, 4 H, H$_2$C(5 and 6), 0.93 (t, $J = 7.0$, 3 H, H$_3$C(7))

13C NMR: (126 MHz, CHCl$_3$)

146.6 (C(4')), 132.3 (C(2')), 131.2 (C(1')), 123.5 (C(3')), 96.8 (C(1)), 79.3 (C(2)), 31.1 (C(5)), 28.1 (C(4)), 22.2 (C(6)), 19.5 (C(3)), 13.9 (C(7))

IR: (neat)

2932 (m), 2860 (m), 2360 (w), 2219(w), 1604 (s), 1594 (s), 1518 (s), 1342(s), 1107 (m), 853 (s), 750 (m)

MS: (EI, 70 ev)

217 (M$^+$, 55), 202 (30), 189 (18), 188 (100), 175 (12), 171 (12), 161 (12), 160 (16), 158 (28), 156 (18), 147 (18), 145 (11), 144 (14), 143 (19), 142 (78), 141 (40), 131 (18), 130 (28), 129 (49), 128 (80), 127 (24), 117 (19), 116 (64), 115 (65), 114 (45), 113 (23), 103 (12), 102 (36), 101 (14), 91 (17), 89 (19), 88 (22), 87 (12), 81 (38), 77 (20), 76 (13), 75 (19), 74 (10), 68 (17), 65 (10), 63 (30), 62 (13), 57 (14), 55 (41)

TLC: R_f 0.42 (hexane/EtOAc, 19/1) [silica gel, KMnO$_4$]

GC: t_R 10.88 min (HP-5, 15 psi, 125 0C for 4 min, 50 0C/min to 250 0C)

Analysis: C$_{13}$H$_{15}$NO$_2$ (217.26)

Calcd: C, 71.87; H, 6.96 N, 6.45%

Found: C, 71.65; H, 6.89 N, 6.48%
Preparation of 1-[4-(1-Heptynyl)phenyl]ethanone (3g) (Table 2, entry 7)

Following General Procedure II, 4-iodoacetophenone (246 mg, 1.00 mmol) was combined with potassium trimethylsilanolate (256 mg, 2.00 mmol, 2.0 equiv), copper(I) iodide (9.6 mg, 0.05 mmol, 0.05 equiv), 2 mL of DME, dimethyl(1-heptynyl)silanol (187 mg, 1.1 mmol, 1.1 equiv), and PdCl$_2$(PPh$_3$)$_2$ (17.2 mg, 0.025 mmol, 0.025 equiv). The product 3g was obtained as a colorless oil in 87% yield (187 mg).

Data for 1-[4-(1-Heptynyl)phenyl]ethanone (3g):

- bp: 155 °C (1.0 mmHg, ABT)
- 1H NMR: (500 MHz, CHCl$_3$)

 7.87 (d, J = 8.0, 2 H, 2 x HC(3')), 7.46 (d, J = 7.5, 2 H, 2 x HC(2')), 2.58 (s, 3 H, H$_3$C(6')), 2.42 (t, J = 7.0, 2 H, H$_2$C(3)), 1.61 (pent, J = 7.5, 2 H, H$_2$C(4)), 1.34-1.45 (m, 4 H, H$_3$C(5 and 6), 0.92 (t, J = 7.0, 3 H, H$_3$C(7))

- 13C NMR: (126 MHz, CHCl$_3$)

 197.2 (C(5')), 135.4 (C(4')), 131.4 (C(2')), 128.9 (C(1')), 127.9 (C(3')), 94.2 (C(1)), 79.8 (C(2)), 30.8 (C(5)), 28.0 (C(4)), 26.3 (C(6')), 21.9 (C(6)), 19.2 (C(3)), 13.7 (C(7))

- IR: (neat)

 3353 (m), 2933 (s), 2861 (s), 2360 (w), 2218 (m), 1927 (w), 1684 (s), 1601 (s), 1403(s), 1357 (s), 1263 (s), 1178 (m), 956 (s), 840 (s)
MS: (EI, 70 ev)

214 (M⁺, 47), 200 (17), 199 (100), 185 (30), 171 (15), 157 (36), 155 (11), 143 (33), 142 (31), 141 (13), 129 (61), 128 (32), 127 (20), 115 (39), 114 (46), 113 (17), 101 (11), 88 (14), 77 (12), 75 (11), 63 (17)

TLC: R_f 0.16 (hexane/EtOAc, 19/1) [silica gel, KMnO₄]

GC: t_R 10.51 min (HP-5, 15 psi, 125 °C for 4 min, 50 °C/min to 250 °C

Analysis: C₁₅H₁₈O (214.30)

Calcd: C, 84.07%; H, 8.47%

Found: C, 84.21%; H, 8.57%

Preparation of 3-(1-Heptynyl)benzenemethanol (3h) (Table 2, entry 8)

Following General Procedure II, 3-iodobenzyl alcohol (234 mg, 1.00 mmol) was combined with potassium trimethylsilanolate (256 mg, 2.00 mmol, 2.0 equiv), copper(I) iodide (9.6 mg, 0.05 mmol, 0.05 equiv), 2 mL of DME, dimethyl(1-heptynyl)silanol (187 mg, 1.1 mmol, 1.1 equiv), and PdCl₂(PPh₃)₂ (17.2 mg, 0.025 mmol, 0.025 equiv). The product 3h was obtained as a colorless oil in 84% yield (169 mg).

Data for 3-(1-Heptynyl)benzenemethanol (3h):

bp: 140 °C (0.5 mmHg, ABT)
1H NMR: (500 MHz, CHCl$_3$)

7.36 (s, 1 H, HC(2')), 7.30 (td, $J = 1.5$, 7.0 1 H, HC(6')), 7.20-7.24 (m, 2 H, HC(5'), HC(4'))), 4.59 (d, $J = 4.0$, 2 H, H_2C(7')), 2.38 (t, $J = 7.0$, 2 H, H_2C(3)), 2.22 (d, $J = 4.0$, 1 H, -OH), 1.62 (pent, $J = 7.0$, 2 H, H_2C(4)), 1.32-1.44 (m, 4 H, H_2C(5 and 6)), 0.90 (t, $J = 7.5$, 3 H, H_3C(7))

13C NMR: (126 MHz, CHCl$_3$)

140.8 (C(1')), 130.7 (C(6')), 129.9 (C(2')), 128.4 (C(5')), 126.0 (C(4')), 124.2 (C(3')), 90.6 (C(1)), 80.3 (C(2)), 64.7 C(7')), 31.0 (C(5)), 28.3 (C(4)), 22.2 (C(6)), 19.3 (C(3)), 13.9 (C(7))

IR: (neat)

3601 (m), 3448 (w,b), 2959 (s), 2861 (s), 2365 (w), 2228 (w), 1602 (m), 1483 (m), 1459 (m), 1431 (m), 1379 (m), 1269 (s), 1033 (m), 793 (s), 728 (s)

MS: (EI, 70 ev)

202 (M$^+$, 62), 173 (32), 171 (13), 155 (18), 145 (61), 144 (11), 143 (62), 142 (16), 141 (15), 131 (16), 130 (13), 129 (88), 128 (52), 127 (17), 118 (11), 117 (100), 116 (17), 115 (65), 91 (32), 77 (15), 63 (12)

TLC: R_f 0.05 (hexane/EtOAc, 19/1) [silica gel, KMnO$_4$]

GC: t_R 9.94 min (HP-5, 15 psi, 125 °C for 4 min, 50 °C/min to 250 °C)

Analysis: C$_{14}$H$_{18}$O (202.29)

Calcd: C, 83.12; H, 8.97%

Found: C, 83.08; H, 9.27%
Preparation of 1-(1-Heptynyl)-2-methoxybenzene (3i)\(^1\) (Table 2, entry 9)\(^1\)

Following General Procedure II, 2-iodoanisole (234 mg, 1.00 mmol) was combined with potassium trimethylsilanolate (256 mg, 2.00 mmol, 2.0 equiv), copper(I) iodide (9.6 mg, 0.05 mmol, 0.05 equiv), 2 mL of DME, dimethyl(1-heptynyl)silanol (187 mg, 1.1 mmol, 1.1 equiv), and PdCl\(_2\)(PPh\(_3\))\(_2\) (17.2 mg, 0.025 mmol, 0.025 equiv). The product 3i was obtained as a colorless oil in 93% yield (188 mg).

Data for 1-(1-Heptynyl)-2-methoxybenzene (3i):

bp: 115 \(^0\)C (0.5 mmHg, ABT)

\(^1\)H NMR: (500 MHz, CHCl\(_3\))

7.38 (dd, \(J = 2.0, 7.5, 1\) H, HC(5')), 7.23 (td, \(J = 2.0, 7.5\) 1 H, HC(4')), 6.84-6.89 (m, 2 H, HC(3'), HC(6'))), 3.88 (s, 3 H, H\(_3\)C(7')), 2.46 (t, \(J =7.0, 2\) H, H\(_2\)C(3)), 1.62 (pent, \(J = 7.5, 2\) H, H\(_2\)C(4)), 1.43 (pent, \(J = 7.5, 2\) H, H\(_2\)C(5)), 1.37 (pent, \(J = 7.0, 2\) H, H\(_2\)C(6)), 0.92 (t, \(J = 7.0, 3\) H, H\(_3\)C(7))

\(^1\)C NMR: (126 MHz, CHCl\(_3\))

159.6 (C(6')), 133.4 (C(2')), 128.6 (C(4')), 120.1 (C(5')), 112.9 (C(1')), 110.3 (C(3')), 94.5 (C(1)), 76.3 (C(2)), 55.5 (C(7')) 30.9 (C(5)), 28.3 (C(4)), 22.0 (C(6)), 19.5 (C(3)), 13.7 (C(7))
IR: (neat)
2932 (m), 2859 (m), 1595 (m), 1575 (m), 1492 (s), 1464 (m), 1433 (m), 1261 (s), 1117 (m), 1026 (m), 750 (s)

MS: (EI, 70 ev)
202 (M^+, 97), 187 (14), 173 (45), 160 (16), 159 (38), 158 (23), 148 (13), 147 (100), 145 (35), 144 (19), 134 (12), 132 (16), 131 (58), 129 (22), 128 (2), 127 (16), 121 (23), 119 (11), 117 (26), 116 (20), 115 (78), 107 (15), 103 (10), 102 (20), 91 (61) 89 (19), 77 (19), 76 (12), 75 (12), 65 (11), 63 (16)

TLC: \(R_f 0.31 \) (hexane/EtOAc, 19/1) [silica gel, KMnO₄]

GC: \(t_R 9.47 \text{ min} \) (HP-5, 15 psi, 125 \(^\circ\)C for 4 min, 50 \(^\circ\)C/min to 250 \(^\circ\)C)

Analysis: \(C_{14}H_{18}O \) (202.29)
Calcd: C, 83.12; H, 8.97%
Found: C, 83.19; H, 8.93%

Preparation of \(1\)-(1-Heptynyl)-2-methylbenzene (3j) (Table 2, entry 10)

\[
\begin{align*}
\text{C}_2\text{H}_11\text{SiMe}_2\text{OH} + \text{C}_6\text{H}_5\text{CH}_3 & \rightarrow \text{C}_8\text{H}_{17} & 3\text{j}
\end{align*}
\]

Following General Procedure II, 2-iodotoluene (218 mg, 1.00 mmol) was combined with potassium trimethylsilanolate (256 mg, 2.00 mmol, 2.0 equiv), copper(I) iodide (9.6 mg, 0.05 mmol, 0.05 equiv), 2 mL of DME, dimethyl(1-heptynyl)silanol (187 mg, 1.1 mmol, 1.1 equiv), and \(\text{PdCl}_2(\text{PPh}_3)_2 \) (17.2 mg, 0.025 mmol, 0.025 equiv). The product 3j was obtained as a colorless oil in 92% yield (171 mg).
Data for 1-(1-Heptynyl)-2-methylbenzene (3j):

bp: 115 °C (0.5 mm Hg ABT)

1H NMR: (500 MHz, CHCl$_3$)

7.36 (d, $J = 7.5$, 1 H, HC(6')), 7.17-7.18 (m, 2 H, HC(3’), HC(5’)), 7.10-7.13 (m, 1 H, HC(4’)), 2.46 (t, $J = 7.0$, 2 H, H$_2$C(3)), 2.43 (s, 3 H, -CH$_3$), 1.62 (pent, $J = 7.5$, 2 H, H$_2$C(4)), 1.44 (pent, $J = 6.5$, 2 H, H$_2$C(5)), 1.38 (pent, $J = 6.5$, 2 H, H$_2$C(6)), 0.92 (t, $J = 7.5$, 3 H, H$_3$C(7))

13C NMR: (126 MHz, CHCl$_3$)

139.7 (C(6’)), 131.5 (C(2’)), 129.0 (C(5’)), 127.2 (C(4’)), 125.1 (C(3’)), 123.6 (C(1’)), 94.2 (C(1)), 79.1 (C(2)), 30.8 (C(5)), 28.3 (C(4)), 22.0 (C(6)), 20.4 (-CH$_3$), 19.2(C(3)), 13.7 (C(7))

IR: (neat)

2957 (s), 2932 (s), 2860 (s), 2234 (w), 1912 (w), 1600 (s), 1486 (s), 1456 (s), 1378 (m), 1330 (m), 1044 (m), 755 (s)

MS: (EI, 70 ev)

186 (M$^+$, 96), 171 (11), 158 (11), 157 (62), 144 (13), 143 (34), 142 (27), 141 (18), 132 (10), 131 (88), 130 (15), 129 (100), 128 (93), 127 (28), 116 (15), 115 (39), 105 (18), 91 (15)

TLC: R_f 0.55 (hexane/EtOAc, 19/1) [silica gel, KMnO$_4$]

GC: t_R 8.67 min (HP-5, 15 psi, 125 °C for 4 min, 50 °C/min to 250 °C)

Analysis: C$_{14}$H$_{18}$ (186.29)

Calcd: C, 90.26; H, 9.74%

Found: C, 89.97; H, 9.82%
Preparation of 1-(1-Heptynyl)-4-methoxybenzene (3a) with Isolation of 1,1’-(1,4-Dipentyl-1,2,3-butatriene-1,4-diyl)bis[4-methoxybenzene] (4) and 1,1’-[1-Pentyl-2-(1-heptynyl)-1,2-ethenediyl]bis[4-methoxybenzene] (5)

To an oven-dried, 25-mL, round-bottom flask equipped with a magnetic stir bar was added 512 mg (4.0 mmol, 4.0 equiv) of potassium trimethylsilanolate under a dry nitrogen atmosphere. To this was added sequentially 4 mL of DME, dimethyl(1-heptynyl)silanol (375 mg, 2.2 mmol, 1.1 equiv), 4-iodoanisole (468 mg, 2.0 mmol), and PdCl$_2$(PPh)$_3$)$_2$ (34.4 mg, 0.05 mmol, 0.025 equiv). The resulting solution was stirred at room temperature for 8 h. The reaction mixture was taken up in 15 mL of Et$_2$O. The combined organic phases were washed with water (2 x 15 mL) and the aqueous phase was back extracted with Et$_2$O (2 x 15 mL). The combined organic extracts were washed with brine (15 mL) and were dried over MgSO$_4$. The volatile solvents were removed in vacuo to provide a dark oil. The oil was taken up in 5 mL of Et$_2$O and loaded onto a 30 mm x 40 cm silica gel column which was eluted with pentane/Et$_2$O, 50/1, (5 psi) to afford 3a (109 mg, 59%) as a pale yellow along with a yellow semisolid. The semisolid was recrystallized from 3 mL of hot ethanol to give 29 mg (7%) of 4 as a bright-
yellow, crystalline solid. The mother liquor was concentrated in vacuo to remove the volatile solvents. The resulting oil was purified by preparative TLC with pentane/Et₂O, 20/1 to give 15 mg (4%) of 5 as a colorless oil.

Data for 4:

¹H NMR: (500 MHz, CHCl₃)

7.57 (dd, J = 2.5, 8.5, 4 H, 4 x HC(2')), 6.88(dd, J = 2.5, 8.5, 4H, 4 x HC(1')), 3.83 (s, 6 H, 2 x -OCH₃), 2.67 (t, J = 9.5, 4 H, 2 x H₂C(5)), 1.79 (pent, J = 9.5, 4 H, 2 x H₂C(4)), 1.40-1.54 (m, 8 H, 4 x H₂C (2, 3)), 0.93 (t, J = 9, 6 H, 2 x H₃C(1))

¹³C NMR: (126 MHz, CHCl₃)

158.84 (C(4')), 151.35 (C(7)), 132.00 (C(2’)), 127.42 (C(1’)), 117.47 (C(3’)), 113.79 (C(6)), 55.32 (-OMe), 33.27 (C(5)), 31.73 (C(4)), 28.56 (C(3)), 22.67 (C(2)), 14.03, (C(1))

MS: (EI, 70 eV)

404 (M⁺, 100), 347 (22), 277 (13), 121 (22)

Data for 5:

¹H NMR: (500 MHz, CHCl₃)

7.43 (d, J = 8.5, 2 H, 2 x HC(3’’)), 7.30 (d, J = 9, 2 H, 2 x HC(3’)), 6.89 (m, 4 H 2 x (HC(2’, 2’’)), 3.83 (s, 6 H, 2 x -OMe), 2.40 (t, J = 7.5, 2 H, H₂C(10)), 2.14 (t, J = 7, 2 H, H₂C(5)), 1.11-1.34 (m, 12 H, H₂C(2,3,4,11,12,13), 0.83 (t, J = 7, 3 H, H₃C(14)), 0.77 (t, J = 7, 3 H, H₃C(1))

¹³C NMR: (126 MHz, CHCl₃)

158.49 (C(4')), 158.41 (C(4’’)), 147.69 (C(6)), 134.27 (C(1’)), 133.16 (C(1’’)), 129.92 (C(2’)), 129.79 (C(2’’)), 119.91 (C(7)), 113.47 (C(3’)), 112.99 (C(3’’)),
92.53 (C(9)), 82.48 (C(8)), 55.23 (OMe), 55.12 (OMe), 33.81 (C(10)), 31.60
(C(5)), 30.86(C(11)), 28.36 (C(4)), 28.22 (C(12)), 22.26 (C(3)), 22.19 (C(13)),
19.56(C(2)), 13.93 (C(14)), 13.91 (C(1))

MS: (EI, 70 eV)

404 (M⁺, 100), 347 (24), 277 (9)

References

(2) Okuro, K.; Furuune, M.; Enna, M.; Miura, M.; Nomura, M. J. Org. Chem. 1993,
58, 4716.