An η^2-Aryl-Metal Interaction Turns a Chiral Monodentate Phosphoramidite into a Chelating Ligand in $(S_{\text{ar}},S_{\text{Rar}},R_{C},R_{C})$-[RuCl($\eta^6$-p-cymene)(O,O'-(1,1'-dinaphthyl-2,2'-diyl)-N-(1-(1,2-\eta-1-naphthyl)ethyl)-N-(1-(1-naphthyl)ethyl)phosphoramidite-κP)]PF$_6$

Dominik Huber, P. G. Anil Kumar, Paul S. Pregosin, and Antonio Mezzetti*

Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, ETH Hönggerberg, CH-8093 Zürich, Switzerland

Supporting Information
General. Reactions with air- or moisture-sensitive materials were carried out under an argon atmosphere using Schlenk techniques, or in a glove box under purified nitrogen. Bis[(R)-(−)-(1-naphthyl)ethyl]amine hydrochloride, bis[(S)-(−)-(1-naphthyl)ethyl]amine hydrochloride, ethyl diazoacetate, α-methylstyrene and n-decane were obtained from Aldrich. (S)-(−)-1,1′-Bi(2-naphthol), (R)-(−)-1,1′-bi(2-naphthol), styrene, n-dodecane, tritylloxonium hexafluorophosphate, (R)-(−)-α-phellandrene and phosphorus trichloride were purchased from Fluka, thallium hexafluorophosphate from Strem or Alfa Aesar, and ruthenium (III) chloride trihydrate from Pressure Chemicals. Ethyl diazoacetate was distilled and stored over 4 Å molecular sieves. All other commercially available reagents were used without further purification. Solvents were purified by standard procedures: CH$_2$Cl$_2$ was distilled from CaH$_2$. [RuCl$_2$(η6-p-cymene)]$_2$ and (S_a,R_c,R_c)-OO'(1,1′-dinaphthyl-2,2′-diyl)-N,N-bis(1-(1-naphthyl)ethyl)phosphoramidite), (S_a,R_c,R_c)-I, were prepared according to literature procedures.1,2 Infrared spectra were recorded on a Perkin Elmer Paragon 1000 FT-IR spectrometer. The samples were prepared as thin films (in CHCl$_3$). The data is being reported as absorption maxima (ν, cm$^{-1}$) with corresponding characteristic intensity (w = weak, m = medium, s = strong, br = broad). Optical rotations were measured using a Perkin Elmer 341 polarimeter with a 1 dm cell in CHCl$_3$. Mass spectra were measured by the MS-service (Laboratorium für Organische Chemie, ETH Zürich). The ESI-MS were recorded on a Micromass AutoSpecUltima mass spectrometer operating at 70 eV, the HR MALDI spectra on a IonSpec Ultima HR MALDI-FT-ICR mass spectrometer at 4.7 Tesla using a DCTB (trans-2-(3-(4-tert-butylphenyl)-2-methyl-2-propylidene)-malononitrile) matrix. The m/z peaks, the interpretation and the relative relative intensities are reported. Elemental analyses were carried out by the Laboratory of Microelemental Analysis (Laboratorium für Organische Chemie, ETH Zürich). 1H, 31P, and 13C spectra were recorded on Bruker Avance 400 and 500
MHz spectrometers. Chemical shifts are quoted in parts per million (ppm) downfield of tetramethylsilane. 31P NMR chemical shifts were referenced externally to 85% H$_3$PO$_4$ (δ 0.0).

[RuCl$_2$(η6-p-cymene)(1-κP)] (2). [RuCl$_2$(η6-p-cymene)]$_2$ (73 mg, 0.119 mmol) and 1 (160 mg, 0.250 mmol, 1.05 equiv) were dissolved in dry CH$_2$Cl$_2$ (10 mL) under an Ar atmosphere. The resulting solution was stirred at 23°C for 1 h. 2-Propanol (15 mL) was added and CH$_2$Cl$_2$ was evaporated. The precipitate was filtered off and dried in vacuum to give 2 as an orange solid. Yield: 64 mg (28%). [α]$_{20}^D$: +155 (c=0.125, CHCl$_3$). 1H NMR (300 MHz, CD$_2$Cl$_2$): δ 1.07 (d, J = 7.0 Hz, 3H, cymene-CH(C$_3$H$_3$)); 1.13 (d, J = 7.0 Hz, 3H, cymene-CH(C$_3$H$_3$)); 1.92 (s, 9H, cymene-CH$_3$ and CH(Ph)(CH$_3$)$_2$); 2.74 (m, 1H, cymene-CH(CH$_3$)$_2$); 4.76 (d, 1H, J = 6.0 Hz, cymene-H$_{arom}$); 4.83 (d, 1H, J = 6.0 Hz, cymene-H$_{arom}$); 4.87 (d, J = 6.5 Hz, 1H, cymene-H$_{arom}$); 5.06 (d, J = 11.5 Hz, 1H, NCH); 5.26 (d, 1H, J = 5.5 Hz, cymene-H$_{arom}$); 6.69–8.06 (m, 26H, H$_{arom}$). 31P NMR (121.5 MHz, CD$_2$Cl$_2$): δ 146.6 (s, 96%, complex 2); 148.3 (s, 4%, free ligand 1). MS (HiRes MALDI): 776 ([2–p-cymene–Cl]$^+$, 100); 640 ([1+H]$^+$, 64); 486 ([1–naphthyl+2H]$^+$, 79). Anal. Calcd for C$_{54}$H$_{48}$Cl$_2$NO$_2$PRu: C, 68.57; H, 5.11; N, 1.48. Found: C, 68.62; H, 5.27; N, 1.51.

[RuCl(η6-p-cymene)(1,2-η-1-κP)]PF$_6$ (3). [RuCl$_2$(η6-p-cymene)]$_2$ (65 mg, 0.107 mmol) and 1 (150 mg, 0.234 mmol, 1.1 equiv) were dissolved in dry CH$_2$Cl$_2$ (12 mL) under an Ar atmosphere. After stirring at 23°C for 1 h, TIPF$_6$ (78 mg, 0.224 mmol, 1.05 equiv) was added and the resulting solution was stirred at 23°C for 21 h. Then, TlCl was filtered off, 2-propanol (18 mL) was added and CH$_2$Cl$_2$ was evaporated. The precipitate was filtered off and dried in vacuum to give 3 as an red solid. Yield: 201 mg (89%). [α]$_{20}^D$: +381 (c=0.125, CHCl$_3$). 1H NMR (500 MHz, CD$_2$Cl$_2$): δ 0.08 (s, 3H, cymene-CH$_3$); 1.18 (d, J = 7.0 Hz, 3H, cymene-CH(CH$_3$)$_2$); 1.47 (d, J = 7.0 Hz, 3H, cymene-CH(CH$_3$)$_2$); 1.54 (d, J = 7.0 Hz, 3H, CH(Np)$_{coord}$(CH$_3$)); 1.73 (d, J = 6.5 Hz, 3H, CH(Np)$_{free}$(CH$_3$)); 2.62 (d, J = 5.5 Hz, 1H,
cymene-H_{arom}; 2.90 (m, 1H, cymene-$CH(CH_3)_2$); 3.55 (m, 1H, NCH$_{\text{coord}}$); 3.81 (d, $J = 5.0$ Hz, 1H, cymene-H_{arom}); 4.62 (d, $J = 5.5$ Hz, 1H, cymene-H_{arom}); 5.05 (m, 1H, NCH$_{\text{free}}$); 5.71 (d, $J = 5.5$ Hz, 1H, cymene-H_{arom}); 6.75–8.20 (m, 25H, H_{arom}); 9.24 (d, $J = 8.5$ Hz, 1H, H_{arom}).

31P NMR (202.5 MHz, CD$_2$Cl$_2$): δ 168.0 (s). MS (ESI): 910.1 ([3]$^+$, 100). Anal. Calcd for C$_{54}$H$_{48}$ClF$_6$NO$_2$P$_2$Ru: C, 61.45; H, 4.58; N, 1.33. Found: C, 61.31; H, 4.66; N, 1.35.

X-Ray Structure Determination of 3. Red crystals of 3 were grown by layering hexane over a CH$_2$Cl$_2$ solution of (rac)-3 (obtained by mixing (S$_a$R$_c$,R$_c$)-1 and (R$_a$S$_c$,S$_c$)-1 in 1:1 ratio). Crystal data: triclinic, P–1, 0.76 x 0.49 x 0.28 mm, $a = 13.3040(8)$, $b = 13.7074(8)$, $c = 15.1350(9)$ Å, $\alpha = 98.822(1)$, $\beta = 96.636(1)$, $\gamma = 11.659(1)^\circ$, $V = 2489.9(3)$ Å3, $Z = 2$, $F(000) = 1200$, $D_{\text{calc}} = 1.574$ g cm$^{-3}$, $\mu = 0.661$ mm$^{-1}$. Data were collected at room temperature on a Bruker AXS SMART APEX platform in the θ range 1.64 – 28.28°. The structure was solved with SHELXTL using direct methods. Of the 25 914 measured (–17\leqh\leq17, –18\leqk\leq18, –20\leql\leq20), 12 262 unique reflections were used in the refinement (full-matrix least squares on F^2 with anisotropic displacement parameters). $R_1 = 0.0405$ (11 071 data with $F_o$$>$$4\sigma(F_o)$), $wR_2 = 0.1112$ (all data). Max. and min. difference peaks were +1.501 and –0.865 eÅ$^{-3}$. See also CIF file below.

Catalyst Preparation and Standard Catalytic Run. Complex [RuCl$_2$(η$_6$-p-cymene)$_2$] (7.3 mg, 12 µmol), 1 (30.7 mg, 48 µmol), and (Et$_3$O)PF$_6$ (6.6 mg, 26 µmol, 1.1 equiv) were dissolved in CH$_2$Cl$_2$ (1 mL) and stirred at 23°C for 17 h. The internal standard and the olefin (0.48 mmol) were added to the solution of the catalyst (24 µmol, 5 mol%). Ethyl diazoacetate (50.5 µL, 0.48 mmol, 1 equiv vs. olefin) in CH$_2$Cl$_2$ (1 mL) was added over 6 h by syringe pump. The solution, which was protected from light, was stirred for additional 14 h at 23°C and then analyzed by GC. The total reaction time was 20 h at 23°C. Each
experiment was at least reproduced once. A control reaction without the catalyst indicated that there is no formation of the cyclopropane derivatives under the conditions used.

Styrene. Olefin conversion and yields of cis and trans product were determined by GC analyses with n-decane as internal standard. Samples for GC analyses were prepared by filtration over a plug of alumina to remove the catalyst. Achiral GC analysis: Optima, 25 m, He carrier (100 kPa). Temperature program: 50°C isotherm for 5 min, then to 200°C at 5°C min⁻¹. Rₜ (min): styrene, 8.5; decane (internal standard), 12.8; ethyl cis-2-phenyl-cyclopropane carboxylate, 26.5; ethyl trans-2-phenyl-cyclopropane carboxylate, 27.9. The enantiomeric excesses of the cis and trans products were determined by chiral GC analysis: Supelco Beta Dex 120, 1.4 mL He min⁻¹; temperature program: 120°C isotherm. Rₜ (min): cis-(1S,2R), 52.8; cis-(1R,2S), 55.5; trans-(1R,2R), 62.7; trans-(1S,2S), 64.6. The absolute configuration was determined for cis- and trans-ethyl 2-phenylcyclopropane-1-carboxylate by comparison of the sign of the optical rotation with literature values.³

α-Methylstyrene. As for styrene with n-dodecane as internal standard. Achiral GC analysis: as for styrene. Rₜ (min): α-methylstyrene, 12.0; dodecane 19.6; ethyl (cis)-2-methyl-phenylcyclopropane-1-carboxylate, 26.3; ethyl (trans)-2-methyl-phenylcyclopropane-1-carboxylate, 27.6. Chiral GC analysis: as for styrene. Rₜ (min): cis-(1R,2S), 40.6; cis-(1S,2R), 42.8; trans-(1S,2S), 51.5; trans-(1R,2R), 52.7. The absolute configuration was determined for ethyl cis- and trans-3-methyl-2-phenylcyclopropane-1-carboxylate by comparison of the sign of the optical rotation with literature values.⁴

References
1H NMR data of 3

ORTEP View of 3

13C NMR data of 3

ORTEP View of 3