Supporting Information for

Spin Crossover in Fe(II) Complexes with N₄S₂ Coordination

Alejandra Arroyave,² Anders Lennartson,³ Alina Dragulescu-Andrasi,⁴ Kasper S. Pedersen,⁵ Stergios Piligkos,⁶ Sebastian A. Stoian,⁷ Samuel M. Greer,⁸ Chongin Pak,⁹ Oleksandr Hietsoi,⁹ Hoa Phan,⁹ Stephen Hill,¹⁰ Christine J. McKenzie,¹⁰ * Michael Shatruk¹⁰, *

¹ Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306, USA
² Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
³ Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
⁴ National High Magnetic Field Laboratory, 1800 E Paul Dirac Dr, Tallahassee, FL 32310, USA
⁵ Department of Physics, Florida State University, Tallahassee FL 32306, USA

* Corresponding authors: shatruk@chem.fsu.edu

Table of Contents:

Figure S1. Supramolecular interactions in the crystal structure of 1 ... S2
Figure S2. Supramolecular interactions in the crystal structure of 3 ... S2
Figure S3. Variable-temperature magnetic susceptibility measurements ... S3
Figure S4. Variable-field Mössbauer spectroscopy measurements for complex 3 ... S3
Figure S5. Relaxation of a thermally trapped HS state of α-2 at 70 K .. S4
Figure S6. Magnetic properties of α-2 dispersed in hexadecane ... S4
Figure S7. The lack of LIESST effect in complex 3 .. S5
Figure S1. Supramolecular interactions in the crystal structure of 1. Chains of complexes 1 run parallel to the \(b \) axis. (a) Intraribbon embraces are observed between the thiocyanate groups of one molecule and the ethylene backbone of the next molecule. (b) View down the \(b \) axis showing interribbon interactions between the terminal thiocyanate S atom on one chain and a pyridine CH group on an adjacent chain. The intraribbon Fe…Fe distances are 9.932(8) Å and 9.851(3) Å and the closest interchain Fe…Fe distance is 8.503(8) Å and 10.685(3) Å for the 90 K and 230 K structures, respectively.

Figure S2. Supramolecular interactions in the crystal structure of 3. Chains of complexes 3 run parallel to the \(b \) axis. (a) Intraribbon embraces are observed between the BC unit of cyanoborohydride groups of one molecule and the ethylene backbone of the next molecule. (b) View down the \(b \) axis showing interribbon interactions between the terminal BH\(_3\) group on one chain and a pyridine CH group on an adjacent chain. The intraribbon Fe…Fe distance is 7.969(9) Å and 8.093(5) Å and the closest interchain Fe…Fe distance is 9.053(9) Å and 9.191(5) Å and for the 150 K and 295 K structures, respectively.
Variable-field Mössbauer spectroscopy measurements for complex 3

At 4.2 K, the Mössbauer spectrum recorded for 3 consists exclusively of a single component, whose parameters are essentially identical to those observed for the diamagnetic, low-spin (LS) FeII sites in 1 and 2. To confirm the presence of only diamagnetic Fe centers at this temperature, we have also recorded and analyzed a series of field-dependent spectra, which demonstrate the presence of a singlet, $S = 0$ ground state for 3. Figure S2 (bottom) shows the 4.2-K, 8-T spectrum of 3 featuring a hyperfine splitting pattern that is characteristic of a diamagnetic, $S = 0$ ground state.
Figure S5. Temperature dependence of χT for α-2 measured during rapid cooling (10 K min$^{-1}$) from 300 to 70 K followed by relaxation at 70 K for 8 h.

Figure S6. Temperature dependence of the χT product obtained for polycrystalline α-2 dispersed in hexadecane. The sample was initially flash-cooled to 40 K and subsequently measured in sequential cooling and warming cycles at 0.4 K min$^{-1}$.
Figure S7. Temperature dependence of χT for 3 measured in cooling mode in dark (Δ) and in warming mode after irradiation with 650-nm light at 10 K (Δ).