Influence of Divalent Cations on Deformation and Rupture of Adsorbed Lipid Vesicles

Supporting Information

Marija Dacic1,2,+, Joshua A. Jackman1,2,+, Saziye Yorulmaz1,2, Vladimir P. Zhdanov1,2,4, Bengt Kasemo5, Nam-Joon Cho*,1,2,3

1School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
2Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive 637553, Singapore
3School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
4Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
5Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden
+The authors contributed equally to this work.

*Corresponding author

E-mail: njcho@ntu.edu.sg
Figure S1. Effect of Divalent Cations on Kinetics of Vesicle Adsorption and Rupture on Silicon Oxide. QCM-D measurements were performed and Δt_c values are presented as a function of time (n = 4 measurements per condition). The control experiment contained the same vesicle preparation and buffer conditions without divalent cations.
Figure S2. QCM-D Measurement Stability in the Presence and Absence of 5 mM CaCl\(_2\) on Silicon Oxide. QCM-D measurements were performed and the baseline signal was recorded in 10 mM Tris buffer [pH 7.5] with 150 mM NaCl and no CaCl\(_2\), and then the solution buffer was exchanged back and forth approximately with the equivalent buffer that had 5 mM CaCl\(_2\).
Figure S3. QCM-D Measurement Stability in the Presence and Absence of 5 mM CaCl\textsubscript{2} on Titanium Oxide. QCM-D measurements were performed and the baseline signal was recorded in 10 mM Tris buffer [pH 7.5] with 150 mM NaCl and no CaCl\textsubscript{2}, and then the solution buffer was exchanged back and forth approximately with the equivalent buffer that had 5 mM CaCl\textsubscript{2}.