Supporting Information

Hexafluoro-2-Propanol-Promoted Intermolecular Friedel-Crafts Acylation Reaction

Rakesh H. Vekariya† and Jeffrey Aubé‡,*
†Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, CB 7363, University of North Carolina, Chapel Hill, NC, 27599-7363, USA, and ‡Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 66045, USA

Table of Contents

Table S1. Examination of Concentration and Stoichiometry S2
General information S3
List of known compounds S3
General Procedure for Solvent Screening (main text, Table 1) S4
General Procedure for Concentration and Stoichiometry Screening (Table S1) S4
General Procedure for the Friedel-Crafts reaction in HFIP S4
Compound Preparation and Characterization S5
Scale-Up Reactions and HFIP Recycling S14
References S15
1H and 13C NMR spectra S18
Table S1. Examination of Concentration and Stoichiometry

<table>
<thead>
<tr>
<th>entry</th>
<th>1a (equiv)</th>
<th>HFIP (mL)</th>
<th>yield, % (^b) (3a/3a')</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>66 (91:9)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>80 (92:8)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>84 (91:9)</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>80 (92:8)</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0.5</td>
<td>68 (92:8)</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>0.25</td>
<td>43 (92:8)</td>
</tr>
<tr>
<td>7(^c)</td>
<td>1</td>
<td>1</td>
<td>66 (92:8)</td>
</tr>
</tbody>
</table>

\(^a\)To 1,3-dimethoxybenzene in HFIP, was added benzoyl chloride (0.75 mmol, 1 equiv). The reaction mixture was stirred at rt for 5 h. \(^b\)Isolated yields based on acyl chloride. \(^c\)Benzoyl chloride was added portionwise over a period of 2 h.
General Information

Reactions were performed in oven-dried glassware or glass sample vial with a rubber-lined cap. Thin-layer chromatography (TLC) was performed using commercial glass-backed silica plates (250 microns) with an organic binder. Visualization was accomplished with UV light. Infrared (IR) spectra were acquired as thin films or solids. All nuclear magnetic resonance (NMR) spectra (\(^1\)H, \(^{13}\)C) were recorded on a 400/101 MHz instrument. NMRs were recorded in deuterated chloroform dimethyl sulfoxide. Chemical shifts are reported in parts per million (ppm) and are referenced to the center line of the solvent (\(\delta 7.26\) and 2.50 ppm with respect to CDCl\(_3\) and DMSO-\(d_6\) for \(^1\)H NMR and \(\delta 77.16\) and 39.52 ppm with respect to CDCl\(_3\) and DMSO-\(d_6\) for \(^{13}\)C NMR, respectively). Coupling constants are given in Hertz (Hz). HRMS data were collected with an electrospray ion source (ESI). Melting points were determined on an automated melting point apparatus and are uncorrected.

List of known compounds

(2,4-Dimethoxyphenyl)(phenyl)methanone (3a),\(^1\) (2,6-dimethoxyphenyl)(phenyl)methanone (3a'),\(^2\) 1-(2,4-dimethoxyphenyl)ethan-1-one (3b),\(^3\) 1-(2,6-dimethoxyphenyl)ethan-1-one (3b'),\(^4\) phenyl(2,4,5-trimethoxyphenyl)methanone (3c),\(^1\) 1-(2,4,5-trimethoxyphenyl)ethan-1-one (3d),\(^4\) 1-(2,4-dimethoxyphenyl)-2-methylpropan-1-one (3e),\(^5\) phenyl(2,4,6-trimethoxyphenyl)methanone (3f),\(^6\) 1-(2,4,6-trimethoxyphenyl)ethan-1-one (3g),\(^7\) (3,4-dimethoxyphenyl)(phenyl)methanone (3i),\(^1\) (4-methoxyphenyl)(phenyl)methanone (3j),\(^1\) phenyl(1H-pyrrol-2-yl)methanone (3l\(_2\)),\(^8\) phenyl(1H-pyrrol-3-yl)methanone (3l\(_3\)),\(^9\) (1H-indol-3-yl)(phenyl)methanone (3m),\(^10\) (2-methyl-1H-indol-3-yl)(phenyl)methanone (3n),\(^11\) (1-methyl-1H-indol-3-yl)(phenyl)methanone (3o),\(^12\) (1H-indol-3-yl)(4-methoxyphenyl)methanone (3p),\(^13\) 1-(1H-indol-3-yl)-2,2-dimethylpropan-1-one (3q),\(^11\) (2-methylbenzo[b]thiophen-3-yl)(phenyl)methanone (3r),\(^14\) benzoylferrocene (3t),\(^15\) (4-methoxyphenyl)(2,4,6-trimethoxyphenyl)methanone (3v),\(^16\) (4-chlorophenyl)(2,4,6-trimethoxyphenyl)methanone (3x),\(^17\) 4-chlorobutyl benzoate.\(^18\)
General Procedure for Solvent Screening (main text, Table 1)
To a solution of 1,3-dimethoxybenzene (104 mg, 0.75 mmol, 1.0 equiv) in HFIP and/or specified solvent (1.0 mL) in an oven-dried N$_2$-flushed 2 dram vial, benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) was added. The resultant mixture was stirred at room temperature for 5 h. Reaction mixture was concentrated and crude was purified on a Combiflash purification system using a silica flash column (90:10 hexanes/EtOAc) to afforded 3a/3a' as a mixture.

General Procedure for Concentration and Stoichiometry Screening (Table S1)
To a solution of 1,3-dimethoxybenzene (1.0–4.0 equiv as indicated in Table S1) in HFIP (1.0 mL, 0.5 mL or 0.25 mL as indicated in Table 2) in an oven-dried N$_2$-flushed 2 dram vial, benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) was added (for entry 7, total amount of benzoyl chloride was divided into five portions, and each portion was added at 30 min interval over a period of 2 h). The resultant mixture was stirred at room temperature for 5 h. Reaction mixture was concentrated and crude was purified on a Combiflash purification system using a silica flash column (90:10 hexanes/EtOAc) to afforded 3a/3a' as a mixture.

General Procedure for the Friedel-Crafts reaction in HFIP
To a solution of arenes or heterocyclic arenes (2.25 mmol, 3.0 equiv) in HFIP (1.0 mL) in an oven-dried N$_2$-flushed 2-dram vial, acid chloride (0.750 mmol, 1.0 equiv) was added. The resultant mixture was stirred at room temperature for 5 h, unless otherwise noted. Reaction mixture was concentrated and crude was purified on a Combiflash purification system using a normal phase silica flash column to afford ketone products.
Compound Preparation and Characterization

(2,4-Dimethoxyphenyl)(phenyl)methanone (3a) and (2,6-dimethoxyphenyl)(phenyl)methanone (3a’)

Following the general procedure, 1,3-dimethoxybenzene (311 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketones 3a/3a’ (152 mg, 84%, 3a/3a’ = 91/9) as a mixture.

1-(2,4-Dimethoxyphenyl)ethan-1-one (3b) and 1-(2,6-dimethoxyphenyl)ethan-1-one (3b’)

Following the general procedure, 1,3-dimethoxybenzene (311 mg, 2.25 mmol, 3.0 equiv) was reacted with acetyl chloride (53 µL, 0.750 mmol, 1.0 equiv) to give the known ketones 3b/3b’ (109 mg, 81%, = 87/13) as a mixture.
Phenyl(2,4,5-trimethoxyphenyl)methanone (3c)
Following the general procedure, 1,2,4-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3c (111 mg, 54%) as a yellow solid.

1-(2,4,5-Trimethoxyphenyl)ethan-1-one (3d)
Following the general procedure, 1,2,4-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with acetyl chloride (53 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3d (95 mg, 60%) as a white solid.

1-(2,4-Dimethoxyphenyl)-2-methylpropan-1-one (3e) and 1-(2,6-dimethoxyphenyl)-2-methylpropan-1-one (3e')
Following the general procedure, 1,3-dimethoxybenzene (311 mg, 2.25 mmol, 3.0 equiv) was reacted with isobutyryl chloride (79 µL, 0.750 mmol, 1.0 equiv) to give the known ketones 3e/3e' (95 mg, 61%, 3e/3e' = 99/1, ratio was determined by GCMS) as a colorless oil.
Phenyl(2,4,6-trimethoxyphenyl)methanone (3f)

Following the general procedure, 1,3,5-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3f (176 mg, 86%) as a white solid.

1-(2,4,6-Trimethoxyphenyl)ethan-1-one (3g)

Following the general procedure, 1,3,5-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with acetyl chloride (53 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3g (145 mg, 92%) as a white solid.

2-Phenyl-1-(2,4,6-trimethoxyphenyl)ethan-1-one (3h)

Following the general procedure, 1,3,5-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with phenylacetyl chloride (99 µL, 0.750 mmol, 1.0 equiv) to give the title ketone (171 mg, 84%) as a yellow solid. Mp: 66–68 °C; TLC (20% EtOAc/hexanes): Rf = 0.50; 1H NMR (400 MHz, CDCl₃) δ 7.37.24 (m, 2H), 7.20 (dt, J = 5.8, 1.5 Hz, 3H), 6.06 (s, 2H), 4.03 (s, 2H), 3.80 (s, 3H), 3.73 (s, 6H); 13C NMR (101 MHz, CDCl₃) δ 201.6, 162.5, 158.3, 135.0, 130.0, 128.3, 126.6, 113.3, 90.7, 55.9, 55.5, 51.7. IR (neat) 1698 cm⁻¹; HRMS (ESI) m/z calcd for C₁₇H₁₉O₄ [M + H]^+: 287.1283, found: 287.1280.
(3,4-Dimethoxyphenyl)(phenyl)methanone (3i)

Following the general procedure, 1,2-dimethoxybenzene (311 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3i (73 mg, 36%) as a white solid.

(4-Methoxyphenyl)(phenyl)methanone (3j)

Following the general procedure, anisole (243 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3j (69 mg, 34%) as a colorless oil.

Phenyl(1H-pyrrol-2-yl)methanone (3l2) and phenyl(1H-pyrrol-3-yl)methanone (3l3)

Following the general procedure, pyrrole (151 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketones 3l2 (86 mg, 42%) and 3l3 (21 mg, 16%) as a brown solid.
(1H-Indol-3-yl)(phenyl)methanone (3m)\(^{10}\)
Following the general procedure, indole (264 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyle chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3m (119 mg, 72%) as a pale yellow solid.

(2-Methyl-1H-indol-3-yl)(phenyl)methanone (3n)\(^{11}\)
Following the general procedure, 2-methyl-1H-indole (295 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyle chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3n (144 mg, 82%) as a yellow solid.

(1-Methyl-1H-indol-3-yl)(phenyl)methanone (3o)\(^{12}\)
Following the general procedure, 1-methyl-1H-indole (295 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyle chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3o (152 mg, 86%) as a white solid.
(1H-Indol-3-yl)(4-methoxyphenyl)methanone (3p)¹³

Following the general procedure, indole (264 mg, 2.25 mmol, 3.0 equiv) was reacted with 4-methoxybenzoyl chloride (103 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3p (99 mg, 53%) as a brown solid.

1-(1H-Indol-3-yl)-2,2-dimethylpropan-1-one (3q)¹³

Following the general procedure, indole (264 mg, 2.25 mmol, 3.0 equiv) was reacted with pivaloyl chloride (92 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3q (137 mg, 91%) as a brown solid.

(2-Methylbenzo[b]thiophen-3-yl)(phenyl)methanone (3r)¹⁴

Following the general procedure, 2-methylbenzo[b]thiophene (334 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3r (121 mg, 64%) as a white solid.
1-(2-Methylbenzo[b]thiophen-3-yl)ethan-1-one (3s)

Following the general procedure, 2-methylbenzo[b]thiophene (334 mg, 2.25 mmol, 3.0 equiv) was reacted with acetyl chloride (53 µL, 0.750 mmol, 1.0 equiv) to give title ketone (67 mg, 47%) as a white solid. Mp: 66–68 °C; TLC (20% EtOAc/hexanes): R_f = 0.40; ^1H NMR (400 MHz, CDCl_3) δ 8.18 (dt, J = 8.3, 0.9 Hz, 1H), 7.75 (ddd, J = 8.0, 1.3, 0.7 Hz, 1H), 7.41 (ddd, J = 8.3, 7.1, 1.3 Hz, 1H), 7.33 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 2.79 (s, 3H), 2.66 (s, 3H); ^13C NMR (101 MHz, CDCl_3) 196.0, 149.1, 138.5, 137.4, 133.1, 125.3, 124.5, 123.9, 121.8, 32.0, 17.2; IR (neat) 1637 cm^{-1}; HRMS (ESI) m/z calcd for C_{11}H_{11}OS [M + H]^+: 191.0531, found: 191.0529.

Benzoylferrocene (3t)

Following the general procedure, ferrocene (419 mg, 2.25 mmol, 3.0 equiv) was reacted with benzoyl chloride (87 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3t (135 mg, 62%) as a red solid.
Following the general procedure, 1,3,5-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with 4-methylbenzoyl chloride (99 µL, 0.750 mmol, 1.0 equiv) to give title ketone (190 mg, 93%) as a white solid. Mp: 142–144 °C; TLC (20% EtOAc/hexanes): \(R_f = 0.50 \); \(^1\)H NMR (400 MHz, CDCl\(_3\)) 7.74 (d, \(J = 8.2 \) Hz, 2H), 7.21 (d, \(J = 8.0 \) Hz, 2H), 6.17 (s, 2H), 3.86 (s, 3H), 3.68 (s, 6H), 2.39 (s, 3H); \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta = 194.8, 162.4, 158.7, 143.9, 135.9, 129.7, 129.2, 111.3, 90.8, 55.9, 55.6, 21.8 \); IR (neat) 1655 cm\(^{-1}\); HRMS (ESI) \(m/z \) calcd for C\(_{17}\)H\(_{19}\)O\(_4\) [M + H\(^+\)]: 287.1283, found: 287.1279.

Following the general procedure, 1,3,5-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with 4-methoxybenzoyl chloride (103 µL, 0.750 mmol, 1.0 equiv) to give the known ketone \(3v \) (189 mg, 83%) as a white solid.

Following the general procedure, 1,3,5-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with 4-fluorobenzoyl chloride (90 µL, 0.750 mmol, 1.0 equiv) to give
title ketone (161 mg, 79%) as a white solid. Mp: 152–154 °C; TLC (20% EtOAc/hexanes): R_f = 0.40; ^1H NMR (400 MHz, CDCl_3) δ 7.90–7.81 (m, 2H), 7.11–7.02 (m, 2H), 6.17 (s, 2H), 3.86 (s, 3H), 3.69 (s, 6H); ^13C NMR (101 MHz, CDCl_3) δ 193.5, 165.9 (d, J_C-F = 255 Hz, 1C), 162.7, 158.8, 134.9 (d, J_C-C-C-F = 3 Hz, 1C), 132.2 (d, J_C-C-C-F = 9 Hz, 2C), 115.5 (d, J_C-C-F = 22 Hz, 2C), 110.7, 90.8, 55.9, 55.6; IR (neat) 1657 cm^{-1}; HRMS (ESI) m/z calcd for C_{16}H_{16}FO_4 [M + H]^+: 291.1033, found: 291.1032.

(4-Chlorophenyl)(2,4,6-trimethoxyphenyl)methanone (3x)

Following the general procedure, 1,3,5-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with 4-chlorobenzoyl chloride (96 µL, 0.750 mmol, 1.0 equiv) to give the known ketone 3x (140 mg, 69%) as a white solid.

(4-Bromophenyl)(2,4,6-trimethoxyphenyl)methanone (3y)

Following the general procedure, 1,3,5-trimethoxybenzene (378 mg, 2.25 mmol, 3.0 equiv) was reacted with 4-bromobenzoyl chloride (165 mg, 0.750 mmol, 1.0 equiv) to give the title ketone (151 mg, 74%) as a white solid. Mp: 188–190 °C; TLC (20% EtOAc/hexanes): R_f = 0.60; ^1H NMR (400 MHz, CDCl_3) δ 7.69 (d, J = 8.6 Hz, 2H), 7.54 (d, J = 8.5 Hz, 2H), 6.16 (s, 2H), 3.86 (s, 3H), 3.68 (s, 6H); ^13C NMR (101 MHz, CDCl_3) δ 194.0, 162.8, 158.9, 137.2, 131.7, 131.1, 128.1, 110.4, 90.8, 55.9, 55.6; IR (neat) 1657 cm^{-1}; HRMS (ESI) m/z calcd for C_{16}H_{16}BrO_4 [M + H]^+: 351.0232, found: 351.0229.
Scale-Up Reactions and HFIP Recycling

![Chemical structure]

Initial reaction:
To a solution of 1,3,5-trimethoxybenzene (22.7 g, 135 mmol, 3.0 equiv) in HFIP (57 mL, 12 equiv) in an oven-dried flask benzoyl chloride (6.33 g, 5.22 mL, 45 mmol, 1.0 equiv) was added. The resultant mixture was stirred at room temperature for 7 h. HFIP solvent was recovered by distillation directly from the reaction pot (40–50 °C, under vacuum (5 millibar)) (46 mL, 81%). The remaining product was purified on a Combiflash purification system using solid loading on a silica flash column (80:20 hexanes/EtOAc) to afforded 3f (10.51 g, 86%) as a white solid.

Second reaction, using recovered HFIP

![Chemical structure]

To a solution of 1,3,5-trimethoxybenzene (7.57 g, 45 mmol, 3.0 equiv) in HFIP (19 mL, 12 equiv), obtained by distillation from previous reaction, in an oven-dried flask, benzoyl chloride (2.11 g, 1.74 mL, 15 mmol, 1.0 equiv) was added. The resultant mixture was stirred at room temperature for 7 h. HFIP solvent was recovered by distillation as described above (18 mL, 95%). The crude was purified on a Combiflash purification system using a silica flash column (80:20 hexanes/EtOAc) to afforded 3f (3.80 g, 93%) as a white solid.
Third reaction, using doubly recovered HFIP

![Chemical structure](image)

5 (3.78 g) + 2 (1.05 g) → 3f (91%; 1.85 g)

To a solution of 1,3,5-trimethoxybenzene (3.78 g, 22.5 mmol, 3.0 equiv) in HFIP (9.5 mL, 12 equiv), obtained by distillation from previous reaction, in an oven-dried flask, benzyol chloride (1.05 g, 0.87 mL, 7.5 mmol, 1.0 equiv) was added. The resultant mixture was stirred at room temperature for 7 h. HFIP solvent was recovered by distillation (9 mL, 95%). The crude was purified on a Combiflash purification system using a silica flash column (80:20 hexanes/EtOAc) to afforded 3f (1.85 g, 91%) as a white solid.

References

1H and 13C NMR Spectra