Supporting Information

Polyprenylated Tetraoxygenated Xanthones from the Roots of *Hypericum monogynum* and their Neuroprotective Activities

Wen-Jun Xu, Rui-Jun Li, Olga Quasie, Ming-Hua Yang, Ling-Yi Kong,* and Jun Luo*

State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People’s Republic of China

* Corresponding author: Tel/Fax: +86-25-83271405 (L.-Y. Kong).

E-mail address: cpu_lykong@126.com (L.-Y. Kong),
luojun1981ly@163.com (J. Luo).
Supporting information list.

**Figure S1.** Known compounds identified from the roots of *Hypericum monogynum*.

**Figure S2.** Plausible biogenetic pathway for the tetraoxygenated xanthone skeleton of compounds 1-17.

**Figure S3-1.** $^1$H NMR spectrum of compound 1 (CDCl$_3$, 500 MHz).

**Figure S3-2.** $^{13}$C NMR spectrum of compound 1 (CDCl$_3$, 125 MHz).

**Figure S3-3.** HSQC spectrum of compound 1 (CDCl$_3$).

**Figure S3-4.** HMBC spectrum of compound 1 (CDCl$_3$).

**Figure S3-5.** ROESY spectrum of compound 1 (CDCl$_3$).

**Figure S3-6.** HRESIMS of compound 1.

**Figure S3-7.** ECD spectrum of compound 1 (MeOH).

**Figure S4-1.** $^1$H NMR spectrum of compound 2 (Acetone-$d_6$, 500 MHz).

**Figure S4-2.** $^{13}$C NMR spectrum of compound 2 (Acetone-$d_6$, 125 MHz).

**Figure S4-3.** HSQC spectrum of compound 2 (Acetone-$d_6$).

**Figure S4-4.** HMBC spectrum of compound 2 (Acetone-$d_6$).

**Figure S4-5.** HRESIMS of compound 2.

**Figure S4-6.** ECD spectrum of compound 2 (MeOH).

**Figure S5-1.** $^1$H NMR spectrum of compound 3 (CDCl$_3$, 500 MHz).

**Figure S5-2.** $^{13}$C NMR spectrum of compound 3 (CDCl$_3$, 125 MHz).

**Figure S5-3.** HSQC spectrum of compound 3 (CDCl$_3$).

**Figure S5-4.** HMBC spectrum of compound 3 (CDCl$_3$).

**Figure S5-5.** ROESY spectrum of compound 3 (CDCl$_3$).

**Figure S5-6.** HRESIMS of compound 3.

**Figure S5-7.** Chiral HPLC analysis of compound 3.

**Figure S5-8.** ECD spectrum of compound (+)-3 (MeOH).

**Figure S5-9.** ECD spectrum of compound (−)-3 (MeOH).

**Figure S6-1.** $^1$H NMR spectrum of compounds 4a/b (CDCl$_3$, 500 MHz).

**Figure S6-2.** $^{13}$C NMR spectrum of compounds 4a/b (CDCl$_3$, 125 MHz).

**Figure S6-3.** HSQC spectrum of compounds 4a/b (CDCl$_3$).
Figure S6-4. HMBC spectrum of compounds 4a/b (CDCl₃).
Figure S6-5. ROESY spectrum of compounds 4a/b (CDCl₃).
Figure S6-6. HRESIMS of compounds 4a/b.
Figure S6-7. Chiral HPLC analysis of compounds 4a/b.
Figure S6-8. ECD spectrum of compounds 4a/b (MeOH).

Figure S7-1. ¹H NMR spectrum of compound 5 (CDCl₃, 500 MHz).
Figure S7-2. ¹³C NMR spectrum of compound 5 (CDCl₃, 125 MHz).
Figure S7-3. HSQC spectrum of compound 5 (CDCl₃).
Figure S7-4. HMBC spectrum of compound 5 (CDCl₃).
Figure S7-5. ROESY spectrum of compound 5 (CDCl₃).
Figure S7-6. HRESIMS of compound 5.
Figure S7-7. Chiral HPLC analysis of compound 5.
Figure S7-8. ECD spectrum of compound (±)-5 (MeOH).

Figure S8-1. ¹H NMR spectrum of compound 6 (CDCl₃, 500 MHz).
Figure S8-2. ¹³C NMR spectrum of compound 6 (CDCl₃, 125 MHz).
Figure S8-3. HSQC spectrum of compound 6 (CDCl₃).
Figure S8-4. HMBC spectrum of compound 6 (CDCl₃).
Figure S8-5. ROESY spectrum of compound 6 (CDCl₃).
Figure S8-6. HRESIMS of compound 6.
Figure S8-7. Chiral HPLC analysis of compound 6.
Figure S8-8. ECD spectrum of compound (±)-6 (MeOH).

Figure S9-1. ¹H NMR spectrum of compound 7 (CDCl₃, 500 MHz).
Figure S9-2. ¹³C NMR spectrum of compound 7 (CDCl₃, 125 MHz).
Figure S9-3. HSQC spectrum of compound 7 (CDCl₃).
Figure S9-4. HMBC spectrum of compound 7 (CDCl₃).
Figure S9-5. ROESY spectrum of compound 7 (CDCl₃).
Figure S9-6. HRESIMS of compound 7.

Figure S10-1. ¹H NMR spectrum of compound 8 (CDCl₃, 500 MHz).
Figure S10-2. ¹³C NMR spectrum of compound 8 (CDCl₃, 125 MHz).
Figure S10-3. HSQC spectrum of compound 8 (CDCl₃).
Figure S10-4. HMBC spectrum of compound 8 (CDCl₃).
Figure S10-5. ROESY spectrum of compound 8 (CDCl₃).
Figure S10-6. HRESIMS of compound 8.
Figure S11-1. ¹H NMR spectrum of compound 9 (CDCl₃, 500 MHz).
Figure S11-2. ¹³C NMR spectrum of compound 9 (CDCl₃, 125 MHz).
Figure S11-3. HSQC spectrum of compound 9 (CDCl₃).
Figure S11-4. HMBC spectrum of compound 9 (CDCl₃).
Figure S11-5. ROESY spectrum of compound 9 (CDCl₃).
Figure S11-6. HRESIMS of compound 9.
Figure S12-1. ¹H NMR spectrum of compound 10 (CDCl₃, 500 MHz).
Figure S12-2. ¹³C NMR spectrum of compound 10 (CDCl₃, 125 MHz).
Figure S12-3. HSQC spectrum of compound 10 (CDCl₃).
Figure S12-4. HMBC spectrum of compound 10 (CDCl₃).
Figure S12-5. HRESIMS of compound 10.
Figure S12-6. Chiral HPLC analysis of compound 10.
Figure S12-7. ECD spectrum of compound (+)-10 (MeOH).
Figure S12-8. ECD spectrum of compound (−)-10 (MeOH).
Figure S13-1. ¹H NMR spectrum of maculatoxanthone (11, CDCl₃, 500 MHz).
Figure S13-2. ¹³C NMR spectrum of maculatoxanthone (11, CDCl₃, 125 MHz).
Figure S13-3. HSQC spectrum of maculatoxanthone (11, CDCl₃).
Figure S13-4. HMBC spectrum of maculatoxanthone (11, CDCl₃).
Figure S13-5. HRESIMS of maculatoxanthone (11).
Figure S1. Known compounds identified from the roots of *Hypericum monogynum*.

α Four typical polyrenylated xanthones reported in 2010 from *H. chinense*.

Figure S2. Plausible biogenetic pathway for the tetraoxygenated xanthone skeleton of compounds 1-17.
Figure S3-1. $^1$H NMR spectrum of compound 1 (CDCl$_3$, 500 MHz).

Figure S3-2. $^{13}$C NMR spectrum of compound 1 (CDCl$_3$, 125 MHz).
Figure S3-3. HSQC spectrum of compound 1 (CDCl₃).

Figure S3-4. HMBC spectrum of compound 1 (CDCl₃).
Figure S3-5. ROESY spectrum of compound 1 (CDCl₃).

Figure S3-6. HRESIMS of compound 1.

<table>
<thead>
<tr>
<th>Target m/z:</th>
<th>533.2895</th>
<th>Result type:</th>
<th>Positive ions</th>
<th>Species:</th>
<th>[M+H]⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td>C (0-80); H (0-120); O (0-30); N(0-10); Na (0-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula</td>
<td>C33H41O6</td>
<td>Calculated m/z</td>
<td>533.2898</td>
<td>PPM Error</td>
<td>0.57</td>
</tr>
</tbody>
</table>
Figure S3-7. ECD spectrum of compound 1 (MeOH).

Figure S4-1. $^1$H NMR spectrum of compound 2 (Acetone-$d_6$, 500 MHz).
Figure S4-2. $^{13}$C NMR spectrum of compound 2 (Acetone-$d_6$, 125 MHz).

Figure S4-3. HSQC spectrum of compound 2 (Acetone-$d_6$).
Figure S4-4. HMBC spectrum of compound 2 (Acetone-$d_6$).

Figure S4-5. HRESIMS of compound 2.
Figure S4-6. ECD spectrum of compound 2 (MeOH).

Figure S5-1. $^1$H NMR spectrum of compound 3 (CDCl$_3$, 500 MHz).
Figure S5-2. $^{13}$C NMR spectrum of compound 3 (CDCl$_3$, 125 MHz).

Figure S5-3. HSQC spectrum of compound 3 (CDCl$_3$).
Figure S5-4. HMBC spectrum of compound 3 (CDCl$_3$).

Figure S5-5. ROESY spectrum of compound 3 (CDCl$_3$).
**Figure S5-6.** HRESIMS of compound 3.

**Figure S5-7.** Chiral HPLC analysis of compound (±)-3.
Figure S5-8. ECD spectrum of compound (+)-3 (MeOH).

Figure S5-9. ECD spectrum of compound (−)-3 (MeOH).
Figure S6-1. $^1$H NMR spectrum of compounds 4a/b (CDCl$_3$, 500 MHz).

Figure S6-2. $^{13}$C NMR spectrum of compounds 4a/b (CDCl$_3$, 125 MHz).
Figure S6-3. HSQC spectrum of compounds 4a/b (CDCl₃).

Figure S6-4. HMBC spectrum of compounds 4a/b (CDCl₃).
Figure S6-5. ROESY spectrum of compounds 4a/b (CDCl₃).

Figure S6-6. HRESIMS of compounds 4a/b.

### Elemental Composition Calculator

<table>
<thead>
<tr>
<th>Target m/z:</th>
<th>545.2908</th>
<th>Result type:</th>
<th>Negative ions</th>
<th>Species:</th>
<th>[M-H]^−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td></td>
<td>C (0-80); H (0-120); O (0-30); N(0-10); Cl (0-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula</td>
<td></td>
<td>Calculated m/z</td>
<td>545.2909</td>
<td>PPM Error</td>
<td></td>
</tr>
<tr>
<td>C32H41O6</td>
<td></td>
<td>545.2909</td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

19
Figure S6-7. Chiral HPLC analysis of compounds 4a/b.

Figure S6-8. ECD spectrum of compounds 4a/b (MeOH).
Figure S7-1. $^1$H NMR spectrum of compound 5 (CDCl$_3$, 500 MHz).

Figure S7-2. $^{13}$C NMR spectrum of compound 5 (CDCl$_3$, 125 MHz).
Figure S7-3. HSQC spectrum of compound 5 (CDCl$_3$).

Figure S7-4. HMBC spectrum of compound 5 (CDCl$_3$).
Figure S7-5. ROESY spectrum of compound 5 (CDCl$_3$).

Figure S7-6. HRESIMS of compound 5.

<table>
<thead>
<tr>
<th>Target m/z:</th>
<th>599.3380</th>
<th>Result type:</th>
<th>Negative ions</th>
<th>Species:</th>
<th>[M-H]$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td>C (0-80); H (0-120); O (0-30); N(0-10); Cl (0-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula</td>
<td>C38H47O6</td>
<td>Calculated m/z</td>
<td>599.3378</td>
<td>PPM Error</td>
<td>-0.32</td>
</tr>
</tbody>
</table>
Figure S7-7. Chiral HPLC analysis of compound (±)-5.

Figure S7-8. ECD spectrum of compound (±)-5 (MeOH).
Figure S8-1. $^1$H NMR spectrum of compound 6 (CDCl$_3$, 500 MHz).

Figure S8-2. $^{13}$C NMR spectrum of compound 6 (CDCl$_3$, 125 MHz).
Figure S8-3. HSQC spectrum of compound 6 (CDCl$_3$).

Figure S8-4. HMBC spectrum of compound 6 (CDCl$_3$).
Figure S8-5. ROESY spectrum of compound 6 (CDCl₃).

Figure S8-6. HRESIMS of compound 6.
Figure S8-7. Chiral HPLC analysis of compound (±)-6.

Figure S8-8. ECD spectrum of compound (±)-6 (MeOH).
Figure S9-1. $^1$H NMR spectrum of compound 7 (CDCl$_3$, 500 MHz).

Figure S9-2. $^{13}$C NMR spectrum of compound 7 (CDCl$_3$, 125 MHz).
Figure S9-3. HSQC spectrum of compound 7 (CDCl₃).

Figure S9-4. HMBC spectrum of compound 7 (CDCl₃).
Figure S9-5. ROESY spectrum of compound 7 (CDCl$_3$).

Figure S9-6. HRESIMS of compound 7.

<table>
<thead>
<tr>
<th>Target m/z:</th>
<th>463.2123</th>
<th>Result type:</th>
<th>Negative ions</th>
<th>Species:</th>
<th>[M-H]$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td>C (0-80); H (0-120); O (0-30); N(0-10); Cl (0-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula</td>
<td>Calcd   mx/z</td>
<td>Calculated m/z</td>
<td>PPM Error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C28H31O6</td>
<td>463.2126</td>
<td>463.2126</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure S10-1. $^1$H NMR spectrum of compound 8 (CDCl$_3$, 500 MHz).

Figure S10-2. $^{13}$C NMR spectrum of compound 8 (CDCl$_3$, 125 MHz).
Figure S10-3. HSQC spectrum of compound 8 (CDCl₃).

Figure S10-4. HMBC spectrum of compound 8 (CDCl₃).
**Figure S10-5.** ROESY spectrum of compound 8 (CDCl$_3$).

**Figure S10-6.** HRESIMS of compound 8.

---

<table>
<thead>
<tr>
<th>Target m/z: 529.2600</th>
<th>Result type: Negative ions</th>
<th>Species:</th>
<th>[M-H]$^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements: C (0-80); H (0-120); O (0-30); N(0-10); Cl (0-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula C33H37O6</td>
<td>Calculated m/z 529.2596</td>
<td>PPM Error -0.8</td>
<td></td>
</tr>
</tbody>
</table>
Figure S11-1. $^1$H NMR spectrum of compound 9 (CDCl$_3$, 500 MHz).

Figure S11-2. $^{13}$C NMR spectrum of compound 9 (CDCl$_3$, 125 MHz).
Figure S11-3. HSQC spectrum of compound 9 (CDCl₃).

Figure S11-4. HMBC spectrum of compound 9 (CDCl₃).
Figure S11-5. ROESY spectrum of compound 9 (CDCl₃).

Elemental Composition Calculator

<table>
<thead>
<tr>
<th>Target m/z:</th>
<th>529.2598</th>
<th>Result type:</th>
<th>Negative ions</th>
<th>Species:</th>
<th>[M-H]⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements:</td>
<td></td>
<td>C (0-80); H (0-120); O (0-30); N(0-10); Cl (0-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion Formula</td>
<td></td>
<td>Calculated m/z</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C33H37O6</td>
<td></td>
<td>529.2596</td>
<td></td>
<td></td>
<td>-0.51</td>
</tr>
</tbody>
</table>

Figure S11-6. HRESIMS of compound 9.
Figure S12-1. $^1$H NMR spectrum of compound 10 (CDCl$_3$, 500 MHz).

Figure S12-2. $^{13}$C NMR spectrum of compound 10 (CDCl$_3$, 125 MHz).
Figure S12-3. HSQC spectrum of compound 10 (CDCl₃).

Figure S12-4. HMBC spectrum of compound 10 (CDCl₃).
Figure S12-5. HRESIMS of compound 10.

Figure S12-6. Chiral HPLC analysis of compound (±)-10.
**Figure S12-7.** ECD spectrum of compound (+)-10 (MeOH).

**Figure S12-8.** ECD spectrum of compound (−)-10 (MeOH).
Figure S13-1. $^1$H NMR spectrum of maculatoxanthone (11, CDCl$_3$, 500 MHz).

Figure S13-2. $^{13}$C NMR spectrum of maculatoxanthone (11, CDCl$_3$, 125 MHz).
Figure S13-3. HSQC spectrum of maculatoxanthone (11, CDCl₃).

Figure S13-4. HMBC spectrum of maculatoxanthone (11, CDCl₃).
Figure S13-5. HRESIMS of maculatoxanthone (11).