

Comparison of metal-metal electronic interactions in an isomeric pair of dinuclear ruthenium complexes with different bridging pathways: effective hole-transfer through a bis-phenolate bridge

Rebecca H. Laye, Samantha M. Couchman and Michael D. Ward*

PRIVILEGED DOCUMENT

REVISED

REC'D

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K.

MAR 2 2001

Supplementary information: preparation and characterisation of ligands INORG CHEM

2,2'-bis(2-methoxyphenyl)-4,4'-bipyridine (Me_2L^1). This preparation is based on a published method.¹ To a stirred, ice-cold mixture of $[\text{Ni}(\text{dppe})\text{Cl}_2]$ (0.05 g, 0.09 mmol) and 2,2'-dichloro-4,4'-bipyridine (0.21 g, 0.97 mmol) in dry THF under N_2 was added a solution of the Grignard reagent 2-MeOC₆H₄MgBr [prepared from 2-bromoanisole (0.44 g, 2.34 mmol) and Mg turnings (0.056 g, 2.34 mmol) in THF]. The mixture was allowed to warm up to room temperature and was then stirred at this temperature for 16 h. The reaction was then quenched with aqueous NH₄Cl, acidified with HCl, and the THF was removed *in vacuo*. The acidic aqueous solution was extracted with CH₂Cl₂ to remove organic impurities; this extract was discarded. The aqueous solution was then made weakly basic with NH₃, and the product was extracted with several portions of CH₂Cl₂ which were combined and dried over MgSO₄. Removal of the solvent afforded Me_2L^1 as a yellow oil (0.10 g, 27%).

EIMS: m/z 368 (M^+). ¹H NMR (270 MHz, CDCl₃): δ 8.81 (2 H, dd, J = 5.3, 0.7 Hz; pyridyl H⁶), 8.11 (2 H, d, J = 1.6, 0.7 Hz; pyridyl H³), 7.82 (2 H, dd, J = 7.6, 2.0 Hz; phenyl), 7.48 (2 H, dd, J = 5.3, 1.6 Hz; pyridyl H⁵), 7.41 (2 H, td, J = 7.8, 1.6 Hz; phenyl), 7.11 (2 H, td, J = 7.4, 1.3 Hz; phenyl), 7.04 (2 H, d, J = 8.0 Hz; phenyl), 3.88 (6 H, s).

3,3'-dibromo-4,4'-dimethoxybiphenyl. A solution of 4,4'-dimethoxybiphenyl (2.50 g, 11.7 mmol) and bromine (1.35 cm³, 26.3 mmol) in acetic acid (60 cm³) was heated to reflux for 30 minutes and then cooled; the product 3,3'-dibromo-4,4'-dimethoxybiphenyl precipitated pure, and was filtered off and dried *in vacuo* (3.6 g, 82%). EIMS: m/z 372 (M^+), 357 ($M^+ - \text{CH}_3$). ¹H

¹H NMR (300 MHz, CDCl₃): δ 7.71 (2 H, d, *J* = 2.6 Hz; phenyl H²), 7.42 (2 H, dd, *J* = 8.4, 2.2 Hz; phenyl H⁶), 6.95 (2 H, d, *J* = 8.6 Hz; phenyl H⁵), 3.93 (6 H, s; Me). Found: C, 45.0; H, 3.3%. Required for C₁₄H₁₂O₂Br₂: C, 45.2; H, 3.3%.

3,3'-bis(2-pyridyl)-4,4'-dimethoxybiphenyl (Me₂L²). This preparation is based on a published method.¹ To a stirred, ice-cold mixture of [Ni(dppe)Cl₂] (1.03 g, 1.96 mmol) and 2-bromopyridine (3.09 g, 19.6 mmol) in dry thf (20 cm³) under N₂ was added a solution of the Grignard reagent {4-MeO-3-MgBr-C₆H₃}₂ [prepared from 3,3'-dibromo-4,4'-dimethoxybiphenyl (3.64 g, 9.79 mmol) and Mg turnings (0.48 g, 19.6 mmol) in thf]. The mixture was allowed to reach room temperature and was then stirred at this temperature for 16 h. The workup was identical to that described above for Me₂L¹, to give Me₂L² as a yellow oil (1.25 g, 35%).

EIMS: *m/z* 368 (M⁺). ¹H NMR (270 MHz, CDCl₃): δ 8.71 (2 H, ddd, *J* = 4.6, 1.6, 1.0 Hz; pyridyl H⁶), 8.00 (2 H, d, *J* = 2.6 Hz; phenyl H²), 7.82 (2 H, dt, *J* = 7.9, 1.1 Hz; pyridyl H³), 7.71 (2 H, td, *J* = 7.6, 1.9 Hz; pyridyl H⁴), 7.65 (2 H, dd, *J* = 8.6, 2.4 Hz; phenyl H⁶), 7.21 (2 H, ddd, *J* = 7.6, 4.9, 1.3 Hz; pyridyl H⁵), 7.05 (2 H, d, *J* = 8.6 Hz, phenyl H⁵), 3.87 (6 H, s; Me).

H₂L¹. This preparation is based on a published method.² Pyridinium chloride was prepared by heating a mixture of pyridine (16 cm³) and concentrated HCl (17.6 cm³) under a stream of N₂ at 195 °C for 2h. After this time, Me₂L¹ (0.10 g, 0.27 mmol) was added and the mixture was heated for a further 3h at 195 °C under N₂. On cooling the mixture solidified; it was dissolved in water and neutralised with aqueous KOH, and then extracted with several portions of CH₂Cl₂ which were combined and dried over MgSO₄. The resultant solid was purified by column chromatography [silica, CH₂Cl₂/MeOH (99:1)] to give pure H₂L¹ (0.060 g, 65%).

EIMS: *m/z* 340 (M⁺). ¹H NMR (270 MHz, CDCl₃): δ 14.1 (2 H, br s; OH), 8.67 (2 H, d, *J* = 5.4 Hz; pyridyl H⁶), 8.15 (2 H, s; pyridyl H³), 7.92 (2 H, dd, *J* = 8.1, 2.0 Hz; phenyl), 7.51 (2 H, dd, *J* = 5.4, 1.6 Hz; pyridyl H⁵), 7.36 (2 H, td, *J* = 8.1, 1.7 Hz, phenyl), 7.07 (2 H, dd, *J* = 8.1, 1.7 Hz; phenyl), 6.95 (2 H, td, *J* = 8.1, 1.6 Hz; phenyl). Found: C, 77.2; H, 4.9; N, 7.8%. Required for C₂₂H₁₆O₂N₂: C, 77.6; H, 4.7; N, 8.2%.

H₂L² was prepared from Me₂L² using pyridinium chloride, exactly as described above for conversion of Me₂L¹ to H₂L¹, in 40% yield.

EIMS: ¹H NMR (270 MHz, CDCl₃): δ 14.4 (2 H, br s; OH), 8.54 (2 H, ddd, *J* = 5.1, 1.9, 1.0 Hz; pyridyl H⁶), 8.02 (2 H, d, *J* = 8.6 Hz; pyridyl H³), 7.97 (2 H, d, *J* = 2.3 Hz; phenyl H²), 7.87 (2 H, td, *J* = 7.9, 1.9; pyridyl H⁴), 7.53 (2 H, dd, *J* = 8.6, 2.3 Hz; phenyl H⁶), 7.27 (2 H, ddd, *J* = 7.3, 5.0, 1.0 Hz; pyridyl H⁵), 7.11 (2 H, dd, *J* = 8.5 Hz; phenyl H⁵). Found: C, 77.3; H, 4.6; N, 7.8%. Required for C₂₂H₁₆O₂N₂: C, 77.6; H, 4.7; N, 8.2%.

- (1) Holligan, B. M.; Jeffery, J. C.; Norgett, M. K.; Schatz. E.; Ward, M. D. *J. Chem. Soc., Dalton Trans.* **1992**, 3345.
- (2) Dietrich-Buchecker, C.; Sauvage, J.-P. *Tetrahedron* **1990**, *46*, 503.