Supporting Information for

Kinetics and Mechanistic Studies of Anticarcinogenic Bisperoxovanadium(V) Compounds: Ligand Susbtitution Reactions at Physiological pH and Relevance to DNA Interactions

J. H. Hwang, R. K. Larson, and Mahdi M. Abu-Omar
Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569

Table S1. IR stretches, UV-Vis extinction coefficients, and 51V-NMR chemical shifts for the ammonium bisperoxovanadium compounds.

<table>
<thead>
<tr>
<th></th>
<th>IR, cm$^{-1}$</th>
<th>UV-Vis</th>
<th>51V NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v (V=O)</td>
<td>v_1 (O-O)</td>
<td>v_3 (MO$_2$)</td>
</tr>
<tr>
<td>BpVBpy</td>
<td>928</td>
<td>878, 857</td>
<td>623</td>
</tr>
<tr>
<td>BpVphen</td>
<td>926</td>
<td>860, 846</td>
<td>649, 624</td>
</tr>
</tbody>
</table>

Figure S1. UV-Vis spectra of 0.9 mM bpVBpy and 0.9 mM bpVphen in 0.1 M, pH 6.8 sodium phosphate buffer.
Figure S2. Plot of [bpVphen] vs. time with 0.9 mM bpVphen and 50 mM picolinic acid in the absence (●) and presence (○) of light.
<table>
<thead>
<tr>
<th>[pic]_T, M</th>
<th>k_{obs}, s^{-1}</th>
<th>[dipic]_T, M</th>
<th>k_{obs}, s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>(4.81 ± 0.05) × 10^{-5}</td>
<td>0.005</td>
<td>(6.44 ± 0.03) × 10^{-5}</td>
</tr>
<tr>
<td>0.02</td>
<td>(9.48 ± 0.06) × 10^{-5}</td>
<td>0.01</td>
<td>(1.44 ± 0.02) × 10^{-4}</td>
</tr>
<tr>
<td>0.03</td>
<td>(1.33 ± 0.02) × 10^{-4}</td>
<td>0.02</td>
<td>(2.99 ± 0.02) × 10^{-4}</td>
</tr>
<tr>
<td>0.04</td>
<td>(1.76 ± 0.03) × 10^{-4}</td>
<td>0.03</td>
<td>(4.39 ± 0.03) × 10^{-4}</td>
</tr>
<tr>
<td>0.05</td>
<td>(2.18 ± 0.02) × 10^{-4}</td>
<td>0.035</td>
<td>(5.10 ± 0.02) × 10^{-4}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[pic]_T, M</th>
<th>k_{obs}, s^{-1}</th>
<th>[dipic]_T, M</th>
<th>k_{obs}, s^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>(7.58 ± 0.04) × 10^{-6}</td>
<td>0.0025</td>
<td>(1.00 ± 0.07) × 10^{-5}</td>
</tr>
<tr>
<td>0.02</td>
<td>(1.66 ± 0.02) × 10^{-5}</td>
<td>0.005</td>
<td>(1.77 ± 0.02) × 10^{-5}</td>
</tr>
<tr>
<td>0.03</td>
<td>(2.19 ± 0.02) × 10^{-5}</td>
<td>0.01</td>
<td>(2.68 ± 0.04) × 10^{-5}</td>
</tr>
<tr>
<td>0.04</td>
<td>(3.28 ± 0.02) × 10^{-5}</td>
<td>0.015</td>
<td>(3.20 ± 0.02) × 10^{-5}</td>
</tr>
<tr>
<td>0.05</td>
<td>(3.88 ± 0.02) × 10^{-5}</td>
<td>0.02</td>
<td>(3.44 ± 0.02) × 10^{-5}</td>
</tr>
<tr>
<td>0.06</td>
<td>(4.65 ± 0.03) × 10^{-5}</td>
<td>0.03</td>
<td>(3.65 ± 0.02) × 10^{-5}</td>
</tr>
</tbody>
</table>

^{a} k_{obs} = v_i/[bpV(L-L)]_i. \(^{b}\) Reaction conditions: [bpV(L-L)]_i = 0.9 mM; Ionic strength (µ) = 1.00 M; in 0.1 M pH 6.8 sodium phosphate buffer at 20 °C.
Figure S3. Plot of absorbance vs. time for reactions of 0.9 mM bpVphen with 50 mM picolinic acid in the absence (□) and presence of 20 mM (△) and 50 mM (○) H₂O₂.
Figure S4. (A) 51V NMR spectrum of the bisperoxo species that resulted from mpVpic$_2$. (B) 51V NMR spectrum of the bisperoxo species that resulted from mpVdipic (10 mM dipicolinic acid). (C) 51V NMR spectrum of the bisperoxo species that resulted from mpVdipic (30 mM dipicolinic acid).
Figure S5. Plot of $\ln(k/T)$ vs. $1/T$ for the reaction of 0.9 mM bpVbpy with 50 mM picolinic acid (●, − − − − −) and 30 mM dipic (○, − − − − −) and for the reactions of 0.9 mM bpVphen with 50 mM picolinic acid (▲, - - - - -), 10 mM dipicolinic acid (□, — - — -), and 30 mM dipicolinic acid (◇, — --- — ---). Reaction conditions: $[\text{bpV}(L-L)]_i = 0.9$ mM; ionic strength (μ) = 1.00 M; in 0.1 M pH 6.8 sodium phosphate buffer; temperature range: 10 – 40 °C.
Derivations of the Rate Laws

(A) Dipic Mechanism

Scheme S1

\[
\begin{align*}
\text{bpV(L-L)} & \quad + \quad 2\text{H}_2\text{O} \quad \xrightleftharpoons[k_{-1}\k_1]{k_1} \quad \text{bpV(H}_2\text{O}_2) \quad + \quad \text{L-L} \\
\text{bpV(H}_2\text{O}_2) & \quad + \quad \text{H}_2\text{dipic} \quad \xrightleftharpoons[k_{-2}\k_2]{k_2} \quad \text{mpVdipic} \quad + \quad \text{H}_2\text{O}_2 \quad + \quad \text{H}_2\text{O}
\end{align*}
\]

The net rate of disappearance of bpV(L-L) (= 'A') is given by the equation

\[
- \frac{d[A]}{dt} = v = \kappa_1[A]_r - \kappa_{-1}[I][L-L]
\] (S1.1)

The steady-state approximation, applied to the concentration of bpV(H2O)2 (= 'I'), gives

\[
\frac{d[I]}{dt} = 0 = \kappa_1[A]_r - \kappa_{-1}[I][L-L] - \kappa_2[I][\text{H}_2\text{dipic}] + \kappa_{-2}[P][\text{H}_2\text{O}_2]
\] (S1.2)

\[
[I]_r = \frac{\kappa_1[A]_r + \kappa_{-2}[P][\text{H}_2\text{O}_2]}{\kappa_2[\text{H}_2\text{dipic}] + \kappa_{-1}[L-L]} \] (S1.3)

Substituting eq S1.3 into S1.1 and rearrangement gives

\[
v = \frac{\kappa_1[A]_r[\text{H}_2\text{dipic}] - \kappa_{-1}[I][\text{H}_2\text{O}_2][L-L]}{\kappa_2[\text{H}_2\text{dipic}] + \kappa_{-1}[L-L]}
\] (S1.4)

In order to express the rate law in terms of [A] as the only concentration variable, eqs S1.5, S1.6, and S1.7 must be incorporated, which express the stoichiometry of the reaction and the thermodynamic equilibrium condition (subscripted e).

\[
[A]_r + [I]_r + [P]_r = [A]_e + [I]_e + [P]_e
\] (S1.5)

\[
\frac{\kappa_1}{\kappa_{-1}} = K_1 = \frac{[I]_e[L-L]}{[A]_e}
\] (S1.6)

\[
\frac{\kappa_2}{\kappa_{-2}} = K_2 = \frac{[P]_e[\text{H}_2\text{O}_2]}{[I]_e[\text{H}_2\text{dipic}]}
\] (S1.7)
Eqs S1.5, S1.6, and S1.7 can be rearranged to

\[[P]_r = [A]_r + [I]_r + [P]_e - [A]_r - [I]_r \]

\[K_1 K_2 = \frac{[P]_r [H_2O][L-L]}{[A]_r [H_dipic]} \]

\[[P]_r = \frac{K_1 K_2 [A]_r [H_dipic]}{[H_2O][L-L]} \]

\[[I]_r = \frac{K_1 [A]_r}{[L-L]} \]

If eqs S1.3, S1.10, and S1.11 are substituted into eq S1.8, the result is

\[[P]_r = [A]_r + \frac{K_1 [A]_r}{[L-L]} + \frac{K_1 K_2 [A]_r [H_dipic]}{[H_2O][L-L]} - \left\{ [A]_r + \left(\frac{k_1 [A]_r + k_2 [P]_r [H_2O]}{k_2 [H_dipic] + k_3 [L-L]} \right) \right\} \]

which can be rearranged to

\[[P]_r = \frac{\left(k_3 [H_2dipic] + k_4 [L-L] \right) \left([H_2O][L-L] + K_1 [H_2O] + K_2 [H_dipic][A] \right) - \left(k_2 [H_dipic] + k_5 [L-L] + k_6 [H_2O][L-L][A] \right) - \left(k_3 [H_2dipic] + k_4 [L-L] \right) \left([H_2O][L-L] \right)}{k_3 [H_2dipic] + k_5 [H_2O] + k_3 [L-L] \left([H_2O][L-L] \right)} \]

Substitution of eq S1.13 into eq S1.4 and algebraic rearrangements gives

\[v = \frac{k_1 k_2 [H_2dipic] + k_3 k_4 [H_2O]}{k_3 [H_2dipic] + k_5 [H_2O] + k_3 [L-L]} \left([A]_r - [A]_r \right) \]

Dipic can exist in three different forms (namely, H_2dipic, Hdipic^−, and dipic^{2−}) in aqueous solutions. Thus, the acid-dissociation equilibrium of dipic (shown below) must be incorporated, and the rate law must be expressed in terms of [dipic]_T.

\[\text{H}_2\text{dipic} \xleftrightarrow{K_{a1}^{\text{dipic}}} \text{Hdipic}^− + \text{H}^+ \]

\[\text{Hdipic}^− \xleftrightarrow{K_{a2}^{\text{dipic}}} \text{dipic}^{2−} + \text{H}^+ \]
The acid-dissociation equilibrium constants for dipic are given by the equations

\[K_{a_1}^{\text{dipic}} = \frac{[\text{Hdipic}^-][H^+]}{[\text{H}_2\text{dipic}]} \]

(S1.15)

\[K_{a_2}^{\text{dipic}} = \frac{[\text{dipic}^{2-}][H^+]}{[\text{Hdipic}^-]} \]

(S1.16)

Also, the term \([\text{dipic}]_T\) is defined by the equation

\[[\text{dipic}]_T = [\text{H}_2\text{dipic}] + [\text{Hdipic}^-] + [\text{dipic}^{2-}] \]

(S1.17)

Multiplying eqs S1.15 by eq S1.16 and rearrangement gives the expression for \([\text{H}_2\text{dipic}]\)

\[[\text{H}_2\text{dipic}] = \frac{[\text{dipic}^{2-}][H^+]^2}{K_{a_1}^{\text{dipic}} K_{a_2}^{\text{dipic}}} \]

(S1.18)

Substituting eq S1.18 into eq S1.17 gives

\[[\text{dipic}]_T = \frac{[\text{dipic}^{2-}][H^+]^2}{K_{a_1}^{\text{dipic}} K_{a_2}^{\text{dipic}}} + [\text{Hdipic}^-] + [\text{dipic}^{2-}] \]

(S1.19)

The fraction of \(\text{Hdipic}^-\), designated \(f_{\text{Hdipic}^-}\), is given by

\[f_{\text{Hdipic}^-} = \frac{[\text{Hdipic}^-]}{[\text{dipic}]_T} = \frac{[\text{Hdipic}^-]}{\left(\frac{[\text{dipic}^{2-}][H^+]^2}{K_{a_1}^{\text{dipic}} K_{a_2}^{\text{dipic}}} + [\text{Hdipic}^-] + [\text{dipic}^{2-}]\right)} \]

(S1.20)

Dividing both the numerator and the denominator on the right side of eq S1.20 by \([\text{dipic}^{2-}][H^+]^2\)
and using eqs S1.15 and S1.16 gives

\[[\text{Hdipic}^-] = \frac{K_{a_1}^{\text{dipic}}[H^+][\text{dipic}]_T}{K_{a_1}^{\text{dipic}} + K_{a_2}^{\text{dipic}}[H^+] + [H^+]^2} \]

(S1.21)

If eq S1.21 is substituted into eq S1.19, \([\text{dipic}^{2-}]\) is expressed in terms of \([\text{dipic}]_T\), which is given by the equation

\[[\text{dipic}^{2-}] = \frac{K_{a_1}^{\text{dipic}} K_{a_2}^{\text{dipic}}[\text{dipic}]_T}{K_{a_1}^{\text{dipic}} + K_{a_2}^{\text{dipic}}[H^+] + [H^+]^2} \]

(S1.22)
Substitution of eq S1.22 into eq S1.18 gives

$$[H_{\text{dipic}}] = \frac{[\text{dipic}][H^+]^2}{K_{\text{a1}}^{\text{dipic}} + K_{\text{a2}}^{\text{dipic}} [H^+] + [H^+]^2} \quad (S1.23)$$

Substitution of eq S1.23 into eq S1.14 and rearrangement gives the full rate law

$$v = \left(\frac{k_1k_2[\text{dipic}][H^+]^2 + k_1k_2[\text{H}_2\text{O}_2][H^+]^2 + k_1k_2K_{\text{a1}}^{\text{dipic}} [\text{H}_2\text{O}_2][H^+]}{+ k_1k_2K_{\text{a1}}^{\text{dipic}} [\text{H}_2\text{O}_2][L-L][H^+]} + k_1k_2K_{\text{a2}}^{\text{dipic}} [\text{H}_2\text{O}_2][L-L]} \right) ([A] - [A]_c) \quad (S1.24)$$

Taking experimentally important terms in eq S1.24, the equation simplifies to eq 2.1

$$v = \left(\frac{k_1k_2[\text{dipic}][H^+]^2}{k_2[\text{dipic}][H^+]^2 + k_2[\text{H}_2\text{O}_2][H^+]^2} \right) ([A] - [A]_c) \quad (2.1)$$

which further simplifies to give the simplified, experimental rate law (eq 2.2)

$$v = \left(\frac{k_1k_2[\text{dipic}]}{k_2[\text{dipic}] + k_2[\text{H}_2\text{O}_2]} \right) ([A] - [A]_c) \quad (2.2)$$
(B) Pic Mechanism

Scheme S2

\[
\begin{align*}
\text{bpV(L-L)} & \quad + \quad \text{Hpic} \quad \xrightleftharpoons[k_{-3}]{k_3} \quad \text{mpV(pic)(L-L)} \quad + \quad \text{HO}_2^- \\
\text{'A'} & \quad \text{mpV(pic)(L-L)} & \quad + \quad \text{Hpic} \quad \xrightleftharpoons[k_{-4}]{k_4} \quad \text{mpV(pic)}_2 \quad + \quad \text{H}^+ \quad + \quad \text{L-L} \quad \text{'I'} \quad \text{who}' \quad + \quad \text{L-L} \quad \text{'P'} \quad \end{align*}
\]

\[
\text{H}_2\text{O}_2 \xrightleftharpoons[k_a]{K_a} \text{HO}_2^- \quad + \quad \text{H}^+
\]

The net rate of disappearance of \(\text{bpV(L-L)} (= \text{'}A\text{'} \) is given by the equation

\[
-\frac{d[A]}{dt} = \nu = k_3[A],[\text{Hpic}] - k_{-3}[I],[\text{HO}_2^-] \quad \text{(S2.1)}
\]

The steady-state approximation, applied to the concentration of \(\text{mpV(pic)(L-L)} (= \text{'}I\text{'} \), gives

\[
\frac{d[I]}{dt} = 0 = k_3[A],[\text{Hpic}] - k_{-3}[I],[\text{HO}_2^-] - k_4[I],[\text{Hpic}] + k_{-4}[P],[L-L][\text{H}^+] \quad \text{(S2.2)}
\]

\[
[I]_e = \frac{k_3[A],[\text{Hpic}] + k_{-4}[P],[L-L][\text{H}^+]}{k_4[\text{Hpic}] + k_{-3}[\text{HO}_2^-]} \quad \text{(S2.3)}
\]

Substituting eq S2.3 into S2.1 and rearrangement gives

\[
\nu = \frac{k_3k_4[A],[\text{Hpic}]^2 - k_{-3}k_4[P],[\text{HO}_2^-][L-L][\text{H}^+]}{k_4[\text{Hpic}] + k_{-3}[\text{HO}_2^-]} \quad \text{(S2.4)}
\]

In order to express the rate law in terms of \([A]\) as the only concentration variable, eqs S2.5, S2.6, and S2.7 must be incorporated, which express the stoichiometry of the reaction and the thermodynamic equilibrium condition (subscripted \(e\)).

\[
[A]_c + [I]_e + [P]_c = [A]_c + [I]_c + [P]_c \quad \text{(S2.5)}
\]

\[
\frac{k_3}{k_{-3}} = K_3 = \frac{[I]_c[\text{HO}_2^-]}{[A]_c[\text{Hpic}]} \quad \text{(S2.6)}
\]
\[
\frac{k_4}{k_4} = K_i = \frac{[P][L-L][H^+]}{[I],[Hpic]}
\] \quad (S2.7)

Eqs S2.5, S2.6, and S2.7 can be rearranged to

\[
[P]_r = [A]_r + [I]_r + [P]_r - [A]_r - [I]_r
\] \quad (S2.8)

\[
K_i K_4 = \frac{[P]_r [HO_2^-][L-L][H^+]}{[A]_r [Hpic]^2}
\] \quad (S2.9)

\[
[P]_r = \frac{K_i K_4 [A]_r [Hpic]^2}{[HO_2^-][L-L][H^+]}
\] \quad (S2.10)

\[
[I]_r = \frac{K_i K_4 [A]_r [Hpic]}{[HO_2^-]}
\] \quad (S2.11)

If eqs S2.3, S2.10, and S2.11 are substituted into eq S2.8, the result is

\[
[P]_r = [A]_r + \frac{K_i [A]_r [Hpic]}{[HO_2^-]} + \frac{K_i K_4 [A]_r [Hpic]^2}{[HO_2^-][L-L][H^+]} - \left(\left[\frac{k_i [A]_r [Hpic] + k_4 [P]_r [L-L][H^+]}{k_4 [Hpic] + k_3 [HO_2^-]}\right]\right)
\] \quad (S2.12)

which then rearranges to

\[
[P]_r = \frac{\left(\frac{\left(k_i [Hpic] + k_3 [HO_2^-]\right)[(HO_2^-)[L-L][H^+] + K_i [Hpic][L-L][H^+] + K_i K_4 [Hpic]^2}{[A]_r}\right)}{\left(k_i [Hpic] + k_3 [HO_2^-] + k_4 [L-L][H^+] [A]_r\right)}
\] \quad (S2.13)

Substitution of eq S2.13 into eq S2.4 and algebraic rearrangements gives

\[
\nu = \left(\frac{K_i K_4 [Hpic]^2 + k_i k_4 [Hpic][L-L][H^+] + k_i k_4 [HO_2^-][L-L][H^+]}{k_i [Hpic] + k_3 [HO_2^-] + k_4 [L-L][H^+]}\right)\left([A]_r - [A]_r\right)
\] \quad (S2.14)

Pic can exist in two different forms (namely, Hpic, and pic) in aqueous solutions. Thus, the acid-dissociation equilibrium of pic (shown below) must be incorporated, and the rate law must be expressed in terms of [pic]_T.

\[
\text{Hpic} \quad \xrightleftharpoons{K_{a}^{\text{pic}}} \quad \text{pic}^- + \text{H}^+
\]
The acid-dissociation equilibrium constant for pic is given by the equation

\[K_{a\text{pic}} = \frac{[\text{pic}^-][H^+]}{[\text{Hpic}]} \]
(S2.15)

Also, the term \([\text{dipic}]_T\) is defined by the equation

\[[\text{pic}]_T = [\text{Hpic}] + [\text{pic}^-] \]
(S2.16)

The fraction of Hpic, designated \(f_{\text{Hpic}}\), is given by

\[f_{\text{Hpic}} = \frac{[\text{Hpic}]}{[\text{pic}]_T} = \frac{[\text{Hpic}]}{[\text{Hpic}] + [\text{pic}^-]} \]
(S2.17)

Dividing both the numerator and the denominator on the right side of eq S2.17 by \([\text{pic}] - [\text{Hpic}]\) and using eq S2.15 gives

\[[\text{Hpic}] = \frac{[\text{pic}]_T[H^+]}{K_{a\text{pic}} + [H^+]} \]
(S2.18)

Since \(\text{HO}_2^-\) rapidly combines with \(H^+\) to form \(\text{H}_2\text{O}_2\), \([\text{HO}_2^-]\) can be expressed in terms of \([\text{H}_2\text{O}_2]\) by using the equations

\[K_{a\text{HO}_2\text{O}_2} = \frac{[\text{HO}_2^-][H^+]}{[\text{H}_2\text{O}_2]} \]
(S2.19)

\[[\text{HO}_2^-] = \frac{K_{a\text{HO}_2\text{O}_2}[\text{H}_2\text{O}_2]}{[H^+]^2} \]
(S2.20)

Substitution of eqs S2.18 and S2.20 into eq S2.14 and rearrangement yields the full rate law

\[v = \left(\frac{k_3 k_4 [\text{pic}]_T^2 [H^+]^3}{k_3 k_{-4} K_{a\text{pic}} [\text{pic}]_T[L-L][H^+]} + \frac{k_3 k_{-4} K_{a\text{pic}} [\text{pic}]_T[L-L][H^+]}{k_3 k_{-4} K_{a\text{pic}} [\text{pic}]_T[L-L][H^+]^3} \right) \]

\[+ \frac{2 k_3 k_{-4} K_{a\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2][L-L][H^+]^2}{2 k_3 k_{-4} K_{a\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2][L-L][H^+]^2} \]

\[+ \frac{2 k_3 k_{-4} K_{a\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2][L-L][H^+]^3}{k_3 k_{-4} K_{a\text{pic}} [\text{pic}]_T[L-L][H^+]^4} \]

\[+ \frac{k_4 [\text{pic}]_T[H^+]^2 + k_3 K_{a\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2][H^+]^2 + k_4 [\text{pic}]_T[\text{pic}]_T[L-L][H^+]^2}{k_4 [\text{pic}]_T[H^+]^2 + k_3 K_{a\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2][H^+]^2 + k_4 [L-L][H^+]^4} \]

\[+ \frac{2 k_3 K_{a\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2][H^+] + 2 k_4 K_{a\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2][H^+]^3}{2 k_3 K_{a\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2][H^+] + 2 k_4 K_{a\text{H}_2\text{O}_2}[\text{H}_2\text{O}_2][H^+]^3} \]

(S2.21)
Taking experimentally important terms in eq S2.21, the equation simplifies to eq 3.1

\[
\nu = \left(\frac{k_3 k_4 [\text{pic}]_T [H^+]^3}{k_4 K_a^{\text{pic}} [\text{pic}]_T [H^+]^2 + k_{-3} K_a^{\text{H}_2\text{O}_2} [\text{H}_2\text{O}_2][H^+]^2} \right) ([A]_r - [A]_e) \tag{3.1}
\]

which further simplifies to give the simplified, experimental rate law (eq 3.2)

\[
\nu = \left(\frac{k_3 k_4 [\text{pic}]_T [H^+]^2}{k_4 K_a^{\text{pic}} [\text{pic}]_T + k_{-3} K_a^{\text{H}_2\text{O}_2} [\text{H}_2\text{O}_2]} \right) ([A]_r - [A]_e) \tag{3.2}
\]