UM518 (UM450 Update!)

Experimental:

A black plate with approximate dimensions 0.145 x 0.127 x 0.044mm³ was placed and optically centered on the Bruker SMART1000 single crystal CCD-diffractometer. The crystals' initial unit cell parameters and crystal orientation matrix were determined from a least-squares analysis of a random set of reflections collected via three sets (30 frames/set) of 0.3° wide ω-scans that were well distributed in reciprocal space. The intensity data were collected with 0.3° wide ω-scans (40sec/frame) and a crystal to detector distance of 4.97cm thus providing a complete sphere of data to 55° in 2θ. The unit cell was now optimized using all of the frames from the initial series (606 frames) and a random set of frames chosen from the subsequent data collection runs and used throughout the data reduction sequence. A total of 8442 data (±h±k±l) were corrected for Lorentz and polarization effects using the SAINT+¹ data reduction program with 1188 unique [R(int)=0.0591]. An empirical absorption correction was applied to the data based upon equivalent reflection measurements using Blessing’s method in the program SADABS².

XPREP³ now checked the cell symmetry, confirmed the systematic absences that clearly indicated the centro symmetric rhombohedral space group R-3 (no. 148) and set up the initial files. The structure was determined by direct methods with the successful location of the Sr and V atoms using the program XS⁴. The structure was refined with XL⁵. The remaining atoms were located from two subsequent difference-Fourier maps. After several cycles of refinement, all of the atoms were refined anisotropically. The final structure was refined to convergence [Δ/σ ≤ 0.001] with R(F)=4.37%, wR(F²)=11.18% and GOF=1.099 for all 1188 unique reflections [R(F)=4.08%, wR(F²)=11.05% for those 1080 data with Fo > 4σ(Fo)]. A final difference-Fourier map possessed several peaks that appear to be ‘ghosts’ and are as large as |Δρ| ≤ 3.23eÅ⁻³, indicating that the structure is both correct and complete.

The function minimized during the full-matrix least-squares refinement was \(\Sigma w(Fo^2-Fc^2) \) where \(w=1/[σ^2(Fo^2)+(0.1220*P)^2] \) and \(P=(max(Fo^2,0)+2*Fc^2)/3 \). An empirical correction for extinction was attempted but found to be negative and not applied.

References:

1. Saint+ Data Reduction program. Bruker Analytical X-ray Systems, Madison, Wisconsin, USA.
Table 1. Crystal data and structure refinement for Sr6V9S22O2.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>b</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>O2 S22 Sr6 V9</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1721.50</td>
</tr>
<tr>
<td>Temperature</td>
<td>153(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Rhombohedral</td>
</tr>
<tr>
<td>Space group</td>
<td>R-3</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 8.7538(6) Å, b = 8.7538(6) Å, c = 34.934(3) Å, α = 90°, β = 90°, γ = 120°</td>
</tr>
<tr>
<td>Volume</td>
<td>2318.3(3) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>3</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>3.699 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>14.334 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2409</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.02 x 0.10 x 0.15 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.75 to 27.47°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-11 ≤ h ≤ 11, -11 ≤ k ≤ 11, -44 ≤ l ≤ 45</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>8442</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>1188 [R(int) = 0.0591]</td>
</tr>
<tr>
<td>Completeness to theta = 27.47°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>1188 / 0 / 60</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.099</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0408, wR2 = 0.1105</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0437, wR2 = 0.1118</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>3.233 and -1.184 e.Å⁻³</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters ($Å^2$ $\times 10^3$) for Sr6V9S22O2. U(eq) is defined as one third of the trace of the orthogonalized U tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr(1)</td>
<td>9775(1)</td>
<td>3826(1)</td>
<td>1117(1)</td>
<td>10(1)</td>
</tr>
<tr>
<td>V(1)</td>
<td>8534(1)</td>
<td>2875(1)</td>
<td>-7(1)</td>
<td>13(1)</td>
</tr>
<tr>
<td>V(2)</td>
<td>10000</td>
<td>0</td>
<td>0</td>
<td>15(1)</td>
</tr>
<tr>
<td>V(3)</td>
<td>10000</td>
<td>0</td>
<td>1530(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>S(1)</td>
<td>10471(1)</td>
<td>2380(1)</td>
<td>400(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>9029(1)</td>
<td>5253(1)</td>
<td>408(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>S(3)</td>
<td>6667</td>
<td>3333</td>
<td>-431(1)</td>
<td>5(1)</td>
</tr>
<tr>
<td>S(4)</td>
<td>10132(2)</td>
<td>7740(2)</td>
<td>1334(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>S(5)</td>
<td>13333</td>
<td>6667</td>
<td>1366(1)</td>
<td>16(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>10000</td>
<td>0</td>
<td>2023(2)</td>
<td>8(1)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for Sr6V9S22O2.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr(1)-O(1)#1</td>
<td>2.6221(17)</td>
</tr>
<tr>
<td>Sr(1)-S(5)</td>
<td>2.9830(9)</td>
</tr>
<tr>
<td>Sr(1)-S(2)</td>
<td>2.9872(13)</td>
</tr>
<tr>
<td>Sr(1)-S(1)</td>
<td>3.0025(13)</td>
</tr>
<tr>
<td>Sr(1)-S(4)#2</td>
<td>3.1000(13)</td>
</tr>
<tr>
<td>Sr(1)-S(4)#3</td>
<td>3.1008(13)</td>
</tr>
<tr>
<td>Sr(1)-S(4)#4</td>
<td>3.1300(13)</td>
</tr>
<tr>
<td>Sr(1)-S(4)</td>
<td>3.3683(13)</td>
</tr>
<tr>
<td>Sr(1)-V(3)#1</td>
<td>3.4902(11)</td>
</tr>
<tr>
<td>Sr(1)-V(3)</td>
<td>3.7411(8)</td>
</tr>
<tr>
<td>Sr(1)-Sr(1)#2</td>
<td>4.3877(9)</td>
</tr>
<tr>
<td>Sr(1)-Sr(1)#5</td>
<td>4.3877(9)</td>
</tr>
<tr>
<td>V(1)-S(2)#2</td>
<td>2.3669(14)</td>
</tr>
<tr>
<td>V(1)-S(1)#6</td>
<td>2.3765(14)</td>
</tr>
<tr>
<td>V(1)-S(3)</td>
<td>2.3851(16)</td>
</tr>
<tr>
<td>V(1)-S(2)#7</td>
<td>2.3888(14)</td>
</tr>
<tr>
<td>V(1)-S(2)</td>
<td>2.3917(14)</td>
</tr>
<tr>
<td>V(1)-S(1)</td>
<td>2.4106(14)</td>
</tr>
<tr>
<td>V(2)-S(1)#8</td>
<td>2.3666(11)</td>
</tr>
<tr>
<td>V(2)-S(1)#6</td>
<td>2.3666(11)</td>
</tr>
<tr>
<td>V(2)-S(1)#9</td>
<td>2.3666(11)</td>
</tr>
<tr>
<td>V(2)-S(1)</td>
<td>2.3666(11)</td>
</tr>
<tr>
<td>V(2)-S(1)#10</td>
<td>2.3666(11)</td>
</tr>
<tr>
<td>V(2)-S(1)#11</td>
<td>2.3666(11)</td>
</tr>
<tr>
<td>V(3)-O(1)</td>
<td>1.724(6)</td>
</tr>
<tr>
<td>V(3)-S(4)#12</td>
<td>2.1499(13)</td>
</tr>
<tr>
<td>V(3)-S(4)#3</td>
<td>2.1500(13)</td>
</tr>
<tr>
<td>V(3)-S(4)#2</td>
<td>2.1500(13)</td>
</tr>
<tr>
<td>V(3)-Sr(1)#13</td>
<td>3.4901(11)</td>
</tr>
<tr>
<td>V(3)-Sr(1)#4</td>
<td>3.4901(11)</td>
</tr>
<tr>
<td>V(3)-Sr(1)#1</td>
<td>3.4902(11)</td>
</tr>
<tr>
<td>V(3)-Sr(1)#10</td>
<td>3.7411(8)</td>
</tr>
<tr>
<td>V(3)-Sr(1)#9</td>
<td>3.7411(8)</td>
</tr>
<tr>
<td>S(1)-V(1)#11</td>
<td>2.3765(14)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>S(2)-V(1)#5</td>
<td>2.3669(14)</td>
</tr>
<tr>
<td>S(2)-V(1)#7</td>
<td>2.3889(14)</td>
</tr>
<tr>
<td>S(3)-V(1)#2</td>
<td>2.3851(16)</td>
</tr>
<tr>
<td>S(3)-V(1)#5</td>
<td>2.3851(16)</td>
</tr>
<tr>
<td>S(4)-V(3)#14</td>
<td>2.1499(13)</td>
</tr>
<tr>
<td>S(4)-Sr(1)#5</td>
<td>3.1000(13)</td>
</tr>
<tr>
<td>S(4)-Sr(1)#15</td>
<td>3.1008(13)</td>
</tr>
<tr>
<td>S(4)-Sr(1)#16</td>
<td>3.1300(14)</td>
</tr>
<tr>
<td>S(5)-S(5)#17</td>
<td>2.103(5)</td>
</tr>
<tr>
<td>S(5)-Sr(1)#15</td>
<td>2.9830(9)</td>
</tr>
<tr>
<td>S(5)-Sr(1)#3</td>
<td>2.9830(9)</td>
</tr>
<tr>
<td>O(1)-Sr(1)#13</td>
<td>2.6220(17)</td>
</tr>
<tr>
<td>O(1)-Sr(1)#4</td>
<td>2.6221(17)</td>
</tr>
<tr>
<td>O(1)-Sr(1)#1</td>
<td>2.6221(17)</td>
</tr>
<tr>
<td>O(1)#1-Sr(1)-S(5)</td>
<td>128.82(8)</td>
</tr>
<tr>
<td>O(1)#1-Sr(1)-S(2)</td>
<td>81.76(12)</td>
</tr>
<tr>
<td>S(5)-Sr(1)-S(2)</td>
<td>104.39(5)</td>
</tr>
<tr>
<td>O(1)#1-Sr(1)-S(1)</td>
<td>123.95(12)</td>
</tr>
<tr>
<td>S(5)-Sr(1)-S(1)</td>
<td>104.33(5)</td>
</tr>
<tr>
<td>S(2)-Sr(1)-S(1)</td>
<td>67.55(3)</td>
</tr>
<tr>
<td>O(1)#1-Sr(1)-S(4)#2</td>
<td>75.40(4)</td>
</tr>
<tr>
<td>S(5)-Sr(1)-S(4)#2</td>
<td>131.35(4)</td>
</tr>
<tr>
<td>S(2)-Sr(1)-S(4)#2</td>
<td>122.08(4)</td>
</tr>
<tr>
<td>S(1)-Sr(1)-S(4)#2</td>
<td>82.74(3)</td>
</tr>
<tr>
<td>O(1)#1-Sr(1)-S(4)#3</td>
<td>138.63(9)</td>
</tr>
<tr>
<td>S(5)-Sr(1)-S(4)#3</td>
<td>67.31(3)</td>
</tr>
<tr>
<td>S(2)-Sr(1)-S(4)#3</td>
<td>135.79(4)</td>
</tr>
<tr>
<td>S(1)-Sr(1)-S(4)#3</td>
<td>72.73(3)</td>
</tr>
<tr>
<td>S(4)#2-Sr(1)-S(4)#3</td>
<td>69.44(5)</td>
</tr>
<tr>
<td>O(1)#1-Sr(1)-S(4)#4</td>
<td>65.81(13)</td>
</tr>
<tr>
<td>S(5)-Sr(1)-S(4)#4</td>
<td>82.51(5)</td>
</tr>
<tr>
<td>S(2)-Sr(1)-S(4)#4</td>
<td>141.55(4)</td>
</tr>
<tr>
<td>S(1)-Sr(1)-S(4)#4</td>
<td>148.39(4)</td>
</tr>
<tr>
<td>S(4)#2-Sr(1)-S(4)#4</td>
<td>70.47(4)</td>
</tr>
<tr>
<td>S(4)#3-Sr(1)-S(4)#4</td>
<td>82.13(3)</td>
</tr>
</tbody>
</table>
O(1)#1-Sr(1)-S(4) 70.72(3)
S(5)-Sr(1)-S(4) 63.82(2)
S(2)-Sr(1)-S(4) 71.96(3)
S(1)-Sr(1)-S(4) 133.00(3)
S(4)#2-Sr(1)-S(4) 140.81(4)
S(4)#3-Sr(1)-S(4) 128.97(4)
S(4)#4-Sr(1)-S(4) 77.99(3)
O(1)#1-Sr(1)-V(3)#1 28.50(13)
S(5)-Sr(1)-V(3)#1 109.08(5)
S(2)-Sr(1)-V(3)#1 107.54(3)
S(1)-Sr(1)-V(3)#1 146.26(3)
S(4)#2-Sr(1)-V(3)#1 71.90(2)
S(4)#3-Sr(1)-V(3)#1 116.27(3)
S(4)#4-Sr(1)-V(3)#1 37.40(3)
S(4)-Sr(1)-V(3)#1 68.91(2)
O(1)#1-Sr(1)-V(3) 105.55(7)
S(5)-Sr(1)-V(3) 97.67(3)
S(2)-Sr(1)-V(3) 144.51(3)
S(1)-Sr(1)-V(3) 80.33(3)
S(4)#2-Sr(1)-V(3) 35.07(2)
S(4)#3-Sr(1)-V(3) 35.07(2)
S(4)#4-Sr(1)-V(3) 68.13(3)
S(4)-Sr(1)-V(3) 143.49(3)
V(3)#1-Sr(1)-V(3) 90.622(13)
O(1)#1-Sr(1)-Sr(1)#2 33.21(5)
S(5)-Sr(1)-Sr(1)#2 160.11(4)
S(2)-Sr(1)-Sr(1)#2 83.71(2)
S(1)-Sr(1)-Sr(1)#2 95.54(2)
S(4)#2-Sr(1)-Sr(1)#2 49.92(3)
S(4)#3-Sr(1)-Sr(1)#2 119.32(3)
S(4)#4-Sr(1)-Sr(1)#2 80.12(2)
S(4)-Sr(1)-Sr(1)#2 102.86(2)
V(3)#1-Sr(1)-Sr(1)#2 51.054(14)
V(3)-Sr(1)-Sr(1)#2 84.797(15)
O(1)#1-Sr(1)-Sr(1)#5 33.21(5)
S(5)-Sr(1)-Sr(1)#5 108.579(19)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(2)-Sr(1)-Sr(1) #5</td>
<td>57.94(2)</td>
</tr>
<tr>
<td>S(1)-Sr(1)-Sr(1) #5</td>
<td>121.24(2)</td>
</tr>
<tr>
<td>S(4)#2-Sr(1)-Sr(1) #5</td>
<td>107.79(3)</td>
</tr>
<tr>
<td>S(4)#3-Sr(1)-Sr(1) #5</td>
<td>165.78(2)</td>
</tr>
<tr>
<td>S(4)#4-Sr(1)-Sr(1) #5</td>
<td>83.83(2)</td>
</tr>
<tr>
<td>S(4)-Sr(1)-Sr(1) #5</td>
<td>44.76(2)</td>
</tr>
<tr>
<td>V(3)#1-Sr(1)-Sr(1) #5</td>
<td>51.054(15)</td>
</tr>
<tr>
<td>V(3)-Sr(1)-Sr(1) #5</td>
<td>138.572(16)</td>
</tr>
<tr>
<td>Sr(1)#2-Sr(1)-Sr(1) #5</td>
<td>60.0</td>
</tr>
<tr>
<td>S(2)#2-V(1)-S(1) #6</td>
<td>91.50(5)</td>
</tr>
<tr>
<td>S(2)#2-V(1)-S(3)</td>
<td>94.77(5)</td>
</tr>
<tr>
<td>S(1)#6-V(1)-S(3)</td>
<td>88.15(5)</td>
</tr>
<tr>
<td>S(2)#2-V(1)-S(2) #7</td>
<td>176.78(6)</td>
</tr>
<tr>
<td>S(1)#6-V(1)-S(2) #7</td>
<td>87.89(5)</td>
</tr>
<tr>
<td>S(3)-V(1)-S(2) #7</td>
<td>88.37(5)</td>
</tr>
<tr>
<td>S(2)#7-V(1)-S(2)</td>
<td>87.74(6)</td>
</tr>
<tr>
<td>S(2)#6-V(1)-S(2)</td>
<td>177.65(6)</td>
</tr>
<tr>
<td>S(3)-V(1)-S(2)</td>
<td>94.13(5)</td>
</tr>
<tr>
<td>S(2)#7-V(1)-S(2)</td>
<td>92.75(5)</td>
</tr>
<tr>
<td>S(2)#2-V(1)-S(1)</td>
<td>86.71(5)</td>
</tr>
<tr>
<td>S(1)#6-V(1)-S(1)</td>
<td>89.94(6)</td>
</tr>
<tr>
<td>S(3)-V(1)-S(1)</td>
<td>177.61(6)</td>
</tr>
<tr>
<td>S(2)#7-V(1)-S(1)</td>
<td>90.13(5)</td>
</tr>
<tr>
<td>S(2)-V(1)-S(1)</td>
<td>87.80(5)</td>
</tr>
<tr>
<td>S(1)#8-V(2)-S(1) #6</td>
<td>88.75(4)</td>
</tr>
<tr>
<td>S(1)#8-V(2)-S(1) #9</td>
<td>91.25(4)</td>
</tr>
<tr>
<td>S(1)#6-V(2)-S(1) #9</td>
<td>180.00(7)</td>
</tr>
<tr>
<td>S(1)#8-V(2)-S(1) #9</td>
<td>180.00(7)</td>
</tr>
<tr>
<td>S(1)#6-V(2)-S(1)</td>
<td>91.25(4)</td>
</tr>
<tr>
<td>S(1)#9-V(2)-S(1) #10</td>
<td>88.75(4)</td>
</tr>
<tr>
<td>S(1)#8-V(2)-S(1) #10</td>
<td>91.25(4)</td>
</tr>
<tr>
<td>S(1)#6-V(2)-S(1) #10</td>
<td>91.25(4)</td>
</tr>
<tr>
<td>S(1)#9-V(2)-S(1) #10</td>
<td>88.75(4)</td>
</tr>
<tr>
<td>S(1)-V(2)-S(1) #10</td>
<td>88.75(4)</td>
</tr>
<tr>
<td>S(1)#8-V(2)-S(1) #11</td>
<td>88.75(4)</td>
</tr>
<tr>
<td>S(1)#6-V(2)-S(1) #11</td>
<td>88.75(4)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>S(1)#9-V(2)-S(1)#11</td>
<td>91.25(4)</td>
</tr>
<tr>
<td>S(1)-V(2)-S(1)#11</td>
<td>91.25(4)</td>
</tr>
<tr>
<td>S(1)#10-V(2)-S(1)#11</td>
<td>180.00(5)</td>
</tr>
<tr>
<td>O(1)-V(3)-S(4)#12</td>
<td>108.49(5)</td>
</tr>
<tr>
<td>O(1)-V(3)-S(4)#3</td>
<td>108.49(5)</td>
</tr>
<tr>
<td>S(4)#12-V(3)-S(4)#3</td>
<td>110.43(5)</td>
</tr>
<tr>
<td>O(1)-V(3)-S(4)#2</td>
<td>108.49(5)</td>
</tr>
<tr>
<td>S(4)#12-V(3)-S(4)#2</td>
<td>110.43(5)</td>
</tr>
<tr>
<td>S(4)#3-V(3)-S(4)#2</td>
<td>110.43(5)</td>
</tr>
<tr>
<td>O(1)-V(3)-Sr(1)#13</td>
<td>46.537(19)</td>
</tr>
<tr>
<td>S(4)#12-V(3)-Sr(1)#13</td>
<td>62.17(4)</td>
</tr>
<tr>
<td>S(4)#3-V(3)-Sr(1)#13</td>
<td>120.13(4)</td>
</tr>
<tr>
<td>S(4)#2-V(3)-Sr(1)#13</td>
<td>128.27(4)</td>
</tr>
<tr>
<td>O(1)-V(3)-Sr(1)#4</td>
<td>46.538(19)</td>
</tr>
<tr>
<td>S(4)#12-V(3)-Sr(1)#4</td>
<td>128.27(4)</td>
</tr>
<tr>
<td>S(4)#3-V(3)-Sr(1)#4</td>
<td>62.17(4)</td>
</tr>
<tr>
<td>S(4)#2-V(3)-Sr(1)#4</td>
<td>120.13(4)</td>
</tr>
<tr>
<td>Sr(1)#13-V(3)-Sr(1)#4</td>
<td>77.89(3)</td>
</tr>
<tr>
<td>O(1)-V(3)-Sr(1)#1</td>
<td>46.538(19)</td>
</tr>
<tr>
<td>S(4)#12-V(3)-Sr(1)#1</td>
<td>120.13(4)</td>
</tr>
<tr>
<td>S(4)#3-V(3)-Sr(1)#1</td>
<td>128.27(4)</td>
</tr>
<tr>
<td>S(4)#2-V(3)-Sr(1)#1</td>
<td>62.17(4)</td>
</tr>
<tr>
<td>Sr(1)#13-V(3)-Sr(1)#1</td>
<td>77.89(3)</td>
</tr>
<tr>
<td>S(4)#12-V(3)-Sr(1)#10</td>
<td>138.82(6)</td>
</tr>
<tr>
<td>S(4)#3-V(3)-Sr(1)#10</td>
<td>55.97(4)</td>
</tr>
<tr>
<td>Sr(1)#13-V(3)-Sr(1)#10</td>
<td>89.378(13)</td>
</tr>
<tr>
<td>Sr(1)#4-V(3)-Sr(1)#10</td>
<td>158.71(4)</td>
</tr>
<tr>
<td>Sr(1)#1-V(3)-Sr(1)#10</td>
<td>82.828(17)</td>
</tr>
<tr>
<td>O(1)-V(3)-Sr(1)</td>
<td>112.69(2)</td>
</tr>
<tr>
<td>S(4)#12-V(3)-Sr(1)</td>
<td>138.82(6)</td>
</tr>
<tr>
<td>S(4)#3-V(3)-Sr(1)</td>
<td>55.97(4)</td>
</tr>
<tr>
<td>S(4)#2-V(3)-Sr(1)</td>
<td>55.95(4)</td>
</tr>
<tr>
<td>Sr(1)#13-V(3)-Sr(1)</td>
<td>158.71(4)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sr(1)#4-V(3)-Sr(1)</td>
<td>82.82(1)</td>
</tr>
<tr>
<td>Sr(1)#1-V(3)-Sr(1)</td>
<td>89.37(1)</td>
</tr>
<tr>
<td>Sr(1)#10-V(3)-Sr(1)</td>
<td>106.07(2)</td>
</tr>
<tr>
<td>O(1)-V(3)-Sr(1)#9</td>
<td>112.69(1)</td>
</tr>
<tr>
<td>S(4)#12-V(3)-Sr(1)#9</td>
<td>55.97(4)</td>
</tr>
<tr>
<td>S(4)#3-V(3)-Sr(1)#9</td>
<td>55.95(4)</td>
</tr>
<tr>
<td>S(4)#2-V(3)-Sr(1)#9</td>
<td>138.82(6)</td>
</tr>
<tr>
<td>Sr(1)#13-V(3)-Sr(1)#9</td>
<td>82.82(17)</td>
</tr>
<tr>
<td>Sr(1)#4-V(3)-Sr(1)#9</td>
<td>89.37(13)</td>
</tr>
<tr>
<td>Sr(1)#1-V(3)-Sr(1)#9</td>
<td>158.71(4)</td>
</tr>
<tr>
<td>Sr(1)#10-V(3)-Sr(1)#9</td>
<td>106.07(2)</td>
</tr>
<tr>
<td>Sr(1)-V(3)-Sr(1)#9</td>
<td>106.07(2)</td>
</tr>
<tr>
<td>V(2)-S(1)-V(1)#11</td>
<td>89.81(5)</td>
</tr>
<tr>
<td>V(2)-S(1)-V(1)</td>
<td>88.99(5)</td>
</tr>
<tr>
<td>V(1)#11-S(1)-V(1)</td>
<td>88.77(4)</td>
</tr>
<tr>
<td>V(2)-S(1)-Sr(1)</td>
<td>151.69(5)</td>
</tr>
<tr>
<td>V(1)#11-S(1)-Sr(1)</td>
<td>118.05(5)</td>
</tr>
<tr>
<td>V(1)-S(1)-Sr(1)</td>
<td>96.14(4)</td>
</tr>
<tr>
<td>V(1)#5-S(2)-V(1)#7</td>
<td>89.51(5)</td>
</tr>
<tr>
<td>V(1)#5-S(2)-V(1)</td>
<td>85.67(6)</td>
</tr>
<tr>
<td>V(1)#7-S(2)-V(1)</td>
<td>87.25(5)</td>
</tr>
<tr>
<td>V(1)#5-S(2)-Sr(1)</td>
<td>152.62(5)</td>
</tr>
<tr>
<td>V(1)#7-S(2)-Sr(1)</td>
<td>117.79(5)</td>
</tr>
<tr>
<td>V(1)-S(2)-Sr(1)</td>
<td>96.93(4)</td>
</tr>
<tr>
<td>V(1)-S(3)-V(1)#2</td>
<td>85.41(7)</td>
</tr>
<tr>
<td>V(1)-S(3)-V(1)#5</td>
<td>85.41(7)</td>
</tr>
<tr>
<td>V(1)#2-S(3)-V(1)#5</td>
<td>85.41(7)</td>
</tr>
<tr>
<td>V(3)#14-S(4)-Sr(1)#5</td>
<td>88.98(4)</td>
</tr>
<tr>
<td>V(3)#14-S(4)-Sr(1)#15</td>
<td>88.96(4)</td>
</tr>
<tr>
<td>Sr(1)#5-S(4)-Sr(1)#15</td>
<td>149.20(5)</td>
</tr>
<tr>
<td>V(3)#14-S(4)-Sr(1)#16</td>
<td>80.43(5)</td>
</tr>
<tr>
<td>Sr(1)#5-S(4)-Sr(1)#16</td>
<td>109.53(4)</td>
</tr>
<tr>
<td>Sr(1)#15-S(4)-Sr(1)#16</td>
<td>100.40(4)</td>
</tr>
<tr>
<td>V(3)#14-S(4)-Sr(1)</td>
<td>170.93(6)</td>
</tr>
<tr>
<td>Sr(1)#5-S(4)-Sr(1)</td>
<td>85.32(3)</td>
</tr>
<tr>
<td>Sr(1)#15-S(4)-Sr(1)</td>
<td>99.54(4)</td>
</tr>
</tbody>
</table>
Sr(1)#16-S(4)-Sr(1)
S(5)#17-S(5)-Sr(1)
S(5)#17-S(5)-Sr(1)#15
Sr(1)-S(5)-Sr(1)#15
S(5)#17-S(5)-Sr(1)#3
Sr(1)-S(5)-Sr(1)#3
Sr(1)#15-S(5)-Sr(1)#3
V(3)-O(1)-Sr(1)#13
V(3)-O(1)-Sr(1)#4
Sr(1)#13-O(1)-Sr(1)#4
V(3)-O(1)-Sr(1)#1
Sr(1)#13-O(1)-Sr(1)#1
Sr(1)#4-O(1)-Sr(1)#1

Symmetry transformations used to generate equivalent atoms:

#1 -x+5/3,-y+1/3,-z+1/3 #2 -x+y+1,-x+1,z #3 -y+2,x-y,z
#4 x-y+2/3,x-2/3,-z+1/3 #5 -y+1,x+y,z #6 x-y,x-1,-z
#7 -x+2,-y+1,-z #8 -x+2,-y,-z #9 -x+y+2,-x+1,z
#10 -y+1,x-y-1,z #11 y+1,-x+y+1,-z #12 x,y-1,z
#13 y+2/3,-x+y+1/3,-z+1/3 #14 x,y+1,z #15 -x+y+2,-x+2,z
#16 y+2/3,-x+y+4/3,-z+1/3 #17 -x+8/3,-y+4/3,-z+1/3

S10
Table 4. Anisotropic displacement parameters (Å² x 10³) for Sr6V9S22O2. The anisotropic displacement factor exponent takes the form: \(-2\pi²[h^2 a^*^2 U^{11} + ... + 2hk a^* b^* U^{12}]\)

<table>
<thead>
<tr>
<th></th>
<th>U¹¹</th>
<th>U²²</th>
<th>U³³</th>
<th>U²³</th>
<th>U¹³</th>
<th>U¹²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr(1)</td>
<td>12(1)</td>
<td>13(1)</td>
<td>10(1)</td>
<td>3(1)</td>
<td>2(1)</td>
<td>9(1)</td>
</tr>
<tr>
<td>V(1)</td>
<td>18(1)</td>
<td>14(1)</td>
<td>5(1)</td>
<td>0(1)</td>
<td>2(1)</td>
<td>8(1)</td>
</tr>
<tr>
<td>V(2)</td>
<td>20(1)</td>
<td>20(1)</td>
<td>3(1)</td>
<td>0</td>
<td>0</td>
<td>10(1)</td>
</tr>
<tr>
<td>V(3)</td>
<td>5(1)</td>
<td>5(1)</td>
<td>5(1)</td>
<td>0</td>
<td>0</td>
<td>3(1)</td>
</tr>
<tr>
<td>S(1)</td>
<td>1(1)</td>
<td>1(1)</td>
<td>9(1)</td>
<td>0(1)</td>
<td>0(1)</td>
<td>0(1)</td>
</tr>
<tr>
<td>S(2)</td>
<td>2(1)</td>
<td>1(1)</td>
<td>6(1)</td>
<td>0(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
</tr>
<tr>
<td>S(3)</td>
<td>2(1)</td>
<td>2(1)</td>
<td>12(1)</td>
<td>0</td>
<td>0</td>
<td>1(1)</td>
</tr>
<tr>
<td>S(4)</td>
<td>8(1)</td>
<td>8(1)</td>
<td>10(1)</td>
<td>-1(1)</td>
<td>1(1)</td>
<td>4(1)</td>
</tr>
<tr>
<td>S(5)</td>
<td>13(1)</td>
<td>13(1)</td>
<td>21(1)</td>
<td>0</td>
<td>0</td>
<td>7(1)</td>
</tr>
<tr>
<td>O(1)</td>
<td>8(2)</td>
<td>8(2)</td>
<td>7(3)</td>
<td>0</td>
<td>0</td>
<td>4(1)</td>
</tr>
</tbody>
</table>