Syntheses and 1H NMR Spectroscopy of Rigid, Cofacially Aligned, Porphyrin-Bridge-Quinone Systems in which the Interplanar Separations Between the Porphyrin, Aromatic Bridge, and Quinone are Less than the Sum of Their Respective van der Waals Radii

Peter M. Iovine, Matthew A. Kellett, Naomi P. Redmore, and Michael J. Therien*
Department of Chemistry, University of Pennsylvania,
Philadelphia, Pennsylvania 19104-6323

Experimental Section:
1-(2,5-Dimethoxyphenyl)-8-[2,5-dimethyl-4-(4′,4′,5′,5′-tetramethyl[1′,3′,2′]dioxaborolan-2′-yl]-1-phenyl]naphthalene (8b). A 50 mL Schlenk reaction vessel was charged with compound 7b (356 mg, 1.0 mmol), compound 3 (194 mg, 0.50 mmol), K$_3$PO$_4$ (164 mg, 0.77 mmol), and Pd(PPh$_3$)$_4$ (29 mg, 0.025 mmol). DMF (5 mL), that had previously been deoxygenated via three freeze-pump-thaw cycles, was cannula transferred to the tube containing the solids. The reaction was heated to 100 °C for 6 h, cooled, filtered, and partitioned with benzene and satd NaCl; the organic layer was washed with satd NaCl (3 x 75 mL) and H$_2$O (1 x 50 mL), following which it was dried over CaCl$_2$, filtered, and evaporated. The recovered solid was chromatographed on silica gel (CHCl$_3$) in order to remove excess 7b, which eluted just prior to the product. After removal of the volatiles, the collected product was rechromatographed on silica gel (5.7:1 hexanes:THF). The product was isolated
as an oil which solidified upon standing at room temperature; isolated yield = 222 mg (91% based on 194 mg of compound 3). *anti:syn* 1.6:1 1H NMR (250 MHz, CDCl$_3$): δ 7.93-7.88 (m, 2 H), 7.52-7.44 (m, 2 H), 7.28-7.13 (m, 3 H), 6.82 (s', 1 H), 6.59 (s''), 1 H), 6.57 (d', 1 H, 3.0 Hz), 6.45 (d'', 1 H, J=3.0 Hz), 6.39 (dd'', 1 H, J=3.2 Hz, J=8.9 Hz), 6.37 (dd', 1 H, J=3.0 Hz, J=8.8 Hz), 6.29 (d', 1 H, 8.9 Hz), 6.22 (d'', 1 H, 8.9 Hz), 3.68 (s'', 3 H), 3.67 (s', 3 H), 3.51 (s', 3 H), 3.42 (s'', 3 H), 2.36 (s', 3 H), 2.28 (s'', 3 H), 1.90 (s'', 3 H), 1.77 (s', 3 H), 1.34 (s', 12 H), 1.33 (s'', 12 H). 13C NMR (500 MHz, CDCl$_3$): δ 19.55, 19.74, 21.35, 21.79, 24.72, 24.79, 24.91, 24.97, 54.85, 54.95, 55.18, 55.76, 82.97, 109.19, 109.94, 111.90, 112.65, 116.36, 118.21, 124.65, 124.79, 124.84, 124.90, 128.42, 128.76, 128.81, 129.20, 129.46, 130.07, 130.21, 130.24, 130.55, 130.65, 131.79, 131.81, 132.25, 132.41, 133.30, 134.56, 134.87, 136.33, 136.40, 136.58, 136.91, 139.74, 139.81, 140.09, 140.33, 144.18, 144.91, 150.30, 150.37, 152.25, 152.31. HRMS (Cl+) m/z: 494.2637 (calcd for C$_{32}$H$_{33}$BO$_4$ (M+) 494.2628).

1-(2,5-Dimethoxyphenyl)-8-[2,5-difluoro-4-(4',4',5',5'-tetramethyl[1',3',2']dioxaborolan-2'-yl]-1-phenyl)naphthalene (8c). A 50 mL Schlenk reaction vessel was charged with 7c (182 mg, 0.50 mmol), 3 (129 mg, 0.33 mmol), K$_3$PO$_4$ (106 mg, 0.50 mmol), and Pd(PPh$_3$)$_4$ (19 mg, 0.016 mmol). DMF (10 mL), that had previously been deoxygenated via three freeze-pump-thaw cycles, was cannula transferred to the tube containing the solids. The reaction was heated to 100 °C for 1 h, cooled, filtered, and partitioned with benzene and satd NaCl; the organic layer was washed with satd NaCl (3 x 75 mL) and H$_2$O (1 x 50 mL), following which it was dried over CaCl$_2$, filtered, and evaporated. The recovered solid was chromatographed on silica.
gel (5.7:1 hexanes:THF); isolated yield = 78 mg (47% based on 129 mg of compound 3).

1H NMR (250 MHz, CDCl$_3$): δ 7.96 (d, 1 H, J=9.0 Hz), 7.93 (d, 1 H, J=8.3 Hz), 7.54 (t, 1 H, J=7.6 Hz), 7.50 (t, 1 H, J=8.3 Hz), 7.38-7.22 (m, 2 H), 6.91-6.76 (m, 3 H), 6.44 (dd, 1 H, J=3.5 Hz, J=9.0 Hz), 6.31 (d, 1 H, J=8.3 Hz), 3.73 (s, 3 H), 3.50 (s, 3 H), 1.37 (s, 12 H). 13C NMR (500 MHz, CDCl$_3$): δ 24.60, 24.64, 24.80, 24.89, 24.90, 54.92, 55.00, 55.81, 55.85, 83.91, 84.28, 109.55, 110.25, 113.17, 113.66, 116.79, 116.82, 117.00, 117.03, 117.97, 120.70, 120.77, 120.88, 120.96, 124.51, 124.69, 125.26, 125.35, 128.81, 128.99, 129.84, 129.89, 130.01, 130.32, 130.45, 130.83, 131.66, 132.83, 134.39, 136.35, 150.14, 150.68, 152.79, 152.84, 153.49, 155.41, 160.87, 162.83. 19F NMR (200 MHz, CDCl$_3$): δ -111.55 (s', 1 F), -112.10 (s', 1 F), -119.57 (d', 1 F, J=14.6 Hz), -123.30 (d'', 1 F, J=16.0 Hz). HRMS (Cl+) m/z: 503.2196 (calcd for C$_{30}$H$_{30}$BF$_2$O$_4$ (MH+) 503.2205).

1-Iodo-8-[2',5'-dimethyl-4'-(8''-[2''', 5'''-dimethoxyphenyl]-1''-naphthyl)-1'-phenyl]naphthalene (9b). A 25 mL Schlenk flask was charged 8b (15 mg, 0.030 mmol), 1,8-diiodonaphthalene (12 mg, 0.032 mmol), Ba(OH)$_2$·8H$_2$O (15 mg, 0.047 mmol), and Pd(PPh$_3$)$_4$ (2 mg, 0.002 mmol). A degassed solution of dimethoxyethane (DME) (3 mL) and distilled water (0.5 mL) was cannula transferred to the reaction vessel and the reaction was heated to 80 °C for 3.5 h. After the reaction was partitioned with benzene and satd NaCl, the organic layer was washed with satd NaCl (3 x 50 mL) and H$_2$O (1 x 50 mL), dried over CaCl$_2$, filtered, and evaporated. The recovered solid was chromatographed on silica gel (9:1 hexanes:THF); the product, isolated as an oil, solidified upon standing at room
temperature. Isolated yield = 12 mg (64% based on 15 mg of compound 9b). *anti*:syn

1.8:1 1H NMR (250 MHz, CDCl$_3$): δ 8.20 (d, 1 H, J=6.9 Hz), 7.99-7.85 (m, 4 H), 7.61-7.49 (m, 3 H), 7.38-7.27 (m, 3 H), 7.07 (t, 1 H, J=7.6 Hz), 6.90 (s, 1 H), 6.72-6.64 (m, 2 H), 6.58-6.56 (m, 1 H), 6.44 (dd, 1 H, J=4.0 Hz, J=8.8 Hz), 3.69 (s′, 3 H), 3.68 (s″, 3 H), 3.55 (s′, 3 H), 3.47 (s″, 3 H), 1.92 (s″, 3 H), 1.83 (s′, 3 H), 1.74 (s′, 3 H), 1.70 (s″, 3 H). 13C NMR (500 MHz, CDCl$_3$): δ 19.81, 19.82, 20.03, 20.24, 54.99, 55.04, 55.24, 55.71, 91.52, 91.59, 109.31, 109.95, 112.21, 112.87, 115.84, 118.02, 124.75, 124.78, 124.89, 124.91, 125.19, 125.21, 126.32, 128.40, 128.44, 128.91, 128.94, 128.96, 129.58, 129.73, 129.95, 129.97, 130.22, 130.39, 130.42, 130.50, 130.64, 130.68, 130.92, 131.09, 131.22, 131.82, 132.09, 132.24, 132.59, 132.80, 132.87, 132.99, 133.03, 133.07, 134.69, 134.97, 135.10, 135.16, 136.67, 136.94, 137.18, 137.55, 139.87, 139.89, 141.15, 141.18, 142.03, 142.25, 142.78, 150.70, 150.50, 152.26. HRMS (CI+) m/z: 620.1190 (calcd for C$_{36}$H$_{29}$IO$_2$ (M+).)

1-Iodo-8-[2′,5′-difluoro-4′-(8″-[2″, 5″-dimethoxyphenyl]-1″-naphthyl)-1′-phenyl]naphthalene (9c). A 25 mL Schlenk flask was charged with 8c (46 mg, 0.092 mmol), 1,8-diiodonaphthalene (70 mg, 0.18 mmol), K$_2$PO$_4$ (29 mg, 0.14 mmol), and DMF (5 mL). The reaction mixture was degassed via three freeze-pump-thaw cycles, following which Pd(PPh$_3$)$_4$ (11 mg, 0.01 mmol) was added. The reaction was heated to 100 °C for 70 min. After partitioning the reaction mixture with CHCl$_3$ and H$_2$O, the organic layer was washed with H$_2$O (4 x 50 mL), dried over CaCl$_2$, filtered, and evaporated, leaving an oily yellow residue which was chromatographed on silica (3:1 hexanes:THF). Following addition of n-pentane to the recovered oil and cooling
to -38 °C, a white solid was isolated via vacuum filtration on a fine glass frit;

isolated yield = 38 mg (66% based on 46 mg of compound 9c). *anti:syn* 5.6:1 ¹H NMR (250 MHz, CDCl₃): δ 8.21 (d, 1 H, J=7.3 Hz), 8.01-7.89 (m, 4 H), 7.63-7.33 (m, 6 H), 7.10 (t, 1 H, J=7.7 Hz), 6.88 (dd, 1 H, J=6.1 Hz, J=9.4 Hz), 6.80-6.60 (m, 2 H), 6.55 (dd, 1 H, J=6.1 Hz, J=9.0 Hz), 6.44 (d, 1 H, J=8.7 Hz), 3.72 (s’, 3 H), 3.67 (s”, 3 H), 3.51 (s’, 3 H), 3.49 (s”, 3 H). ¹³C NMR (500 MHz, CDCl₃): δ 55.03, 55.14, 55.75, 55.77, 91.21, 91.24, 109.82, 110.25, 113.45, 113.97, 116.08, 116.75, 116.78, 116.95, 116.98, 117.36, 117.39, 117.56, 117.59, 118.35, 118.38, 118.55, 118.58, 118.75, 119.59, 119.62, 119.79, 119.82, 124.65, 124.79, 125.11, 125.14, 125.26, 125.30, 126.72, 126.74, 128.89, 129.11, 129.80, 129.98, 130.25, 130.28, 130.42, 130.56, 130.61, 130.75, 130.80, 130.94, 131.15, 131.41, 131.44, 132.19, 132.49, 132.73, 134.09, 134.16, 134.60, 134.91, 135.19, 135.28, 136.20, 136.32, 142.39, 142.41, 150.39, 150.99, 152.71, 152.73, 153.49, 153.51, 154.78, 154.80, 155.41, 155.42, 156.68, 156.7. ¹⁹F NMR (200 MHz, CDCl₃): δ -119.59 (m’, 1 F), -122.05 (m’, 1 F), -122.45 (m”, 1 F), -122.98 (m”, 1 F). HRMS (CI+) m/z: 629.0758 (calcd for C₃₄H₂₄F₂I₂O₂ (MH+) 629.0789).

[5-(8'-[2''',5'''-Dimethyl-4’’’-[8’’’-2’’’’, 5’’’-dimethoxyphenyl]-1’’’’-naphthyl]-1’’’’-phenyl]-1’-naphthyl)-10,20-diphenylporphinato]zinc(II) (10b). A 25 mL Schlenk tube was charged with 9b (42 mg, 0.068 mmol), [5-(4’,4’,5’,5’-tetramethyl[1’,3’,2’]dioxaborolan-2’-yl)-10,20-diphenylporphinato]zinc(II) (66 mg, 0.10 mmol), Ba(OH)₂•8H₂O (32 mg, 0.10 mmol), distilled H₂O (0.5 mL), and dimethoxyethane (DME) (5 mL). This mixture was degassed via three freeze-pump-thaw cycles, following which Pd(PPh₃)₄ (4 mg, 0.004 mmol) was added. After heating at 80 °C for 12 h, the mixture was partitioned
between CHCl₃ and H₂O; the organic layer was washed with H₂O (3 x 20 mL) and chromatographed on silica using an eluant polarity that increased gradually from 9:1 hexanes:THF to 7:3 hexanes:THF over the course of the separation. The third band contained the product which required further chromatography on silica (CHCl₃) to remove a closely eluting porphyrinic impurity; isolated yield = 33 mg (48% based on 42 mg of compound 9b). *anti: syn* 1:8:1 ¹H NMR (500 MHz, CDCl₃, see Figure 2 for proton labeling schematic): δ 10.24 (s'', 1 H, Hₘeso), 10.23 (s', 1 H, Hₘeso), 9.45 (d', 1 H, J=4.5 Hz, Hₜₚ), 9.42 (d'', 1 H, J=4.5 Hz, Hₜₚ), 9.38 (d', 1 H, J=4.5 Hz, H₤ₚ), 9.33 (d'', 1 H, J=4.4 Hz, H₤ₚ), 9.12 (d', 1 H, J=4.5 Hz, H₤ₚ), 9.06 (d'', 1 H, J=4.5 Hz, H₤ₚ), 9.01 (d'', 1 H, J=4.4 Hz, H₤ₚ), 8.96 (d', 1 H, J=4.4 Hz, H₤ₚ), 8.81 (d'', 1 H, J=4.6 Hz, H₤ₚ), 8.77 (d', 1 H, J=4.6 Hz, H₤ₚ), 8.73 (d', 1 H, J=4.6 Hz, H₤ₚ), 8.71 (d', 1 H, J=4.6 Hz, H₤ₚ), 8.66 (d'', 1 H, J=4.8 Hz, H₤ₚ), 8.65 (d'', 1 H, J=5.5 Hz, H₤ₚ), 8.61 (d'', 1 H, J=4.6 Hz, H₤ₚ), 8.53 (d', 1 H, J=4.5 Hz, H₤ₚ), 8.37 (d, 1 H, J=8.3 Hz, Hₐ₁₁), 8.28 (d, 1 H, J=6.8 Hz, Hₐ₁₄), 8.22-8.07 (m, 4 H, H₁₃ + Hortho,10,20 phenyls x 2), 8.02 (d(br), 1 H, J=7.4 Hz, Hortho,10,20 phenyls), 7.82 (t, 1 H, J=7.6 Hz, H₁₂), 7.77-7.59 (m, 7 H, H₁₅ + Hmeta/para,10,20 phenyls), 7.30-7.27 (m, 1 H, H₇), 6.99-6.95 (m, 2 H, H₉), 6.93 (d', 1 H, J=8.3 Hz, H₇), 6.85 (d'', 1 H, J=5.7 Hz, H₁₉), 6.76 (d', 1 H, J=5.7 Hz, H₁₆), 6.61 (d'', 1 H, J=5.8 Hz, H₁₀), 6.55 (d', 1 H, J=5.7 Hz, H₁₀), 6.25-6.22 (m, 1 H, H₁₇), 5.87 (d'', 1 H, J=8.8 Hz, H₁₈), 5.85 (d', 1 H, J=8.8 Hz, H₁₈), 5.69 (d', 1 H, J=3.1 Hz, H₁₉), 5.50 (d'', 1 H, J=3.1 Hz, H₁₉), 5.03 (t'', 1 H, J=7.6 Hz, H₈), 5.01 (t', 1 H, J=7.6 Hz, H₈), 4.91 (s'', 1 H, H₆'-xylene), 4.71 (s', 1 H, H₆'-xylene), 4.30 (s', 1 H, H₃'-xylene), 4.06 (s'', 1 H, H₃'-xylene), 3.30 (s', 3 H, OMe), 3.27 (s'', 3 H, OMe), 2.89 (s', 3 H, OMe), 2.87 (s'', 3 H, OMe), 1.02 (s', 3 H, Me), 0.91 (s'', 3 H, Me), 0.77 (d'', 1 H, J=6.9 Hz, H₇), 0.72 (d', 1 H, J=5.7 Hz, H₇), -0.88 (s'', 3 H, Me), -1.12 (s', 3 H, Me).
Vis (CH₂Cl₂): 423.8 (5.52), 548.5 (4.26). HRMS (ESI+) m/z: 1039.2948 (calcd for C₆₆H₄₈N₄O₂NaZn (M+Na) 1039.2966).

[5-(8′-[2′′,5′′-difluoro-4′′-(8′′-[2′′′, 5′′′-dimethoxyphenyl]-1′′′-naphthyl)-1′′-phenyl]-1′′-naphthyl)-10,20-diphenylporphinato]zinc(II) (10c). A 50 mL Schlenk tube was charged with 9c (15 mg, 0.024 mmol), [5-(4′,4′,5′,5′-tetramethyl[1′,3′,2′]dioxaborolan-2′-yl]-10,20-diphenylporphinato]zinc(II) (23 mg, 0.035 mmol), Ba(OH)₂•8H₂O (11 mg, 0.035 mmol), distilled H₂O (0.5 mL), and dimethoxyethane (DME) (5 mL). The mixture was degassed via three freeze-pump-thaw cycles, following which Pd(PPh₃)₄ (3 mg, 0.003 mmol) was added. After heating at 80 °C for 3 h, the mixture was partitioned between CHCl₃ and H₂O; the organic layer was washed with H₂O (3 x 20 mL), and chromatographed on silica gel (3:1 hexanes:THF). A small fraction of (5,15-diphenylporphinato)zinc(II) eluted first; the second band, eluting just prior to the red product band, contained an orange porphyrinic impurity. Isolated yield = 14 mg (57% based on 15 mg of compound 9c). anti:syn 3.3:1 ¹H NMR (500 MHz, CDCl₃, see Figure 2 for proton labeling schematic): δ 10.20 (s, 1 H, Hₘₑₙₙ), 9.41 (d, 1 H, J=4.5 Hz, Hₚ), 9.32 (d, 1 H, J=4.4 Hz, Hₚ), 9.10 (d, 1 H, J=4.4 Hz, Hₚ), 8.98 (d, 1 H, J=4.4 Hz, Hₚ), 8.84-8.81 (m, 2 H, Hₚ x 2), 8.74 (d′, 1 H, J=4.6 Hz, Hₚ), 8.72 (d′′, 1 H, J=4.6 Hz, Hₚ), 8.58 (d′, 1 H, J=4.6 Hz, Hₚ), 8.40 (d′, 1 H, J=4.6 Hz, Hₚ), 8.36 (d, 1 H, J=8.3 Hz, H₁₁), 8.27 (d, 1 H, J=8.4 Hz, H₁₄/₁₃), 8.24 (d, 1 H, J=6.8 Hz, H₁₄/₁₃), 8.22-8.13 (m, 3 H, H₂₂/₁₀₂₀ phenyls x 3), 8.04 (d′ (br), 1 H, J=7.4 Hz, Hₚ ortho, 10.20 phenyls), 8.01 (d′ (br), 1 H, J=7.5 Hz, Hₚ ortho, 10.20 phenyls), 7.82 (t, 1 H, J=7.6 Hz, H₁₂), 7.75-7.62 (m, 7 H, H₁₅ + Hₘₑₙₙ, 10.20 phenyls), 7.24 (d, 1
H, J=8.3 Hz, H₈), 7.00-6.90 (m, 3 H, H₃+H₇+H₁₅), 6.67 (d'', 1 H, J=5.6 Hz, H₁₀), 6.62 (d', 1 H, J=6.9 Hz, H₁₀), 6.32 (dd, 1 H, J=3.1 Hz, J=8.8 Hz, H₁₇), 5.90 (d'', 1 H, J=8.2 Hz, H₁₈), 5.88 (d', 1 H, J=8.8 Hz, H₁₉), 5.75-5.74 (m', 1 H, H₁₉), 5.67 (d'', 1 H, J=3.1 Hz, H₁₉), 4.94-4.85 (m, 2 H, H₆+H₆'-difluorophenyl), 3.90 (m, 1 H, H₃'-difluorophenyl), 3.32 (s', 3 H, OMe), 3.26 (s'', 3 H, OMe), 2.87 (s', 3H, OMe), 2.86 (s'', 3 H, OMe), 0.88 (d'', 1 H, J=6.6 Hz, H₃), 0.71 (d', 1 H, J=5.8 Hz, H₃). ¹⁹F NMR (200 MHz, CDCl₃): δ -119.73 (m', 1 F), -120.66 (m'', 1 F), -123.16 (m', 1 F), -125.52 (m'', 1 F). Vis (CH₂Cl₂): 420 (5.56), 508 (sh), 546 (4.17), 582 (sh). HRMS (ESI+) m/z: 1047.2491 (calcd for C₆₆H₄₂F₂N₄O₂NaZn (M+Na) 1047.2465).

Supplementary Figure Captions:

Figure S1. 500 MHz ¹H NMR spectrum of compound 1 in CDCl₃.

Figure S2. 500 MHz ¹H NMR spectra of compounds (A) 2a, (B) 2b, and (C) 2c in CDCl₃.

Figure S3. 500 MHz ¹H NMR spectrum of compound 5 in CDCl₃.

Figure S4. 500 MHz ¹H NMR spectra of compounds (A) 10a, (B) 10b, and (C) 10c in CDCl₃.
\[^1H \text{NMR } \text{CompD Z} \]

Solvent: CDCl₃
\[\text{Solvent: CDCl}_3 \]

\[\text{H NMR (CDCl}_3, \text{Z}c \text{Cmpd)} \]
'H NMR Compound 10
Solvent: CDCl₃