(Supporting Information)

Chiral Stimuli-Responsive Gels: Helicity Induction in Poly(phenylacetylene) Gels Bearing a Carboxyl Group with Chiral Amines

Hidetoshi Goto, Hao Qian Zhang, and Eiji Yashima*
Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

Figure S-1. (A) Changes in the molar ellipticity of the second Cotton of gel-1-H (run 5 in Table 1) swollen in DMSO with (S)-5 upon the addition of (R)-5 at room temperature. The CD intensities were normalized using molar absorptivity at 400 nm ($\varepsilon_{400} = 2860$). The error bars represent the standard deviation estimated by three measurements of CD spectra. The molar ratios of amines to the monomer units of the gels are 10 ((S)-5) (a, □), 20 ((S)-5:(R)-5 = 10:10) (b, △) and 60 ((S)-5:(R)-5 = 10:50) (c, □). The changes of CD spectra marked by arrows in part A are also shown in B.

Figure S-2. (A) Changes in the molar ellipticity of the second Cotton of gel-2-H (run 4 in Table 2) swollen in DMSO with (S)-5 upon the addition of (R)-5 at room temperature. The CD intensities were normalized using molar absorptivity at 400 nm ($\varepsilon_{400} = 2860$). The error bars represent the standard deviation estimated by three measurements of CD spectra. The molar ratios of amines to the monomer units of the gels are 10 ((S)-5) (a, □), 20 ((S)-5:(R)-5 = 10:10) (b, △) and 60 ((S)-5:(R)-5 = 10:50) (c, □). The changes of CD spectra marked by arrows in part A are also shown in B.