

# Rhodium-Catalyzed Anti-Markovnikov Hydroamination of Vinylarenes

## Supporting Information

Masaru Utsunomiya, Ryoichi Kuwano, Motoi Kawatsura and John F Hartwig\*

*Yale University, Department of Chemistry,*

*P.O. Box 208107, New Haven, CT 06520-8107*

**General comments.** All reactions were performed under a nitrogen atmosphere using standard Schlenk and drybox techniques. Toluene, diethyl ether, and pentane were distilled from sodium and benzophenone under nitrogen. Vinylarenes, amines, 2-(2-dimethylaminoethyl)piridine and ligands in Table 1, except for DBFphos were purchased from commercial sources and were used without further purification. DBFphos was synthesized by literature procedures.<sup>1</sup> Dimethylamine was purchased from Aldrich as a 2.0 M solution in tetrahydrofuran. NMR spectra were recorded on Bruker DPX 400 and 500 MHz instruments. Elemental analyses were performed by Robertson Microlit Laboratories, Madison, NJ.

**[Rh(cod)(DPEphos)]BF<sub>4</sub>.** In a drybox, [Rh(cod)Cl]<sub>2</sub> (192 mg, 0.389 mmol) and AgBF<sub>4</sub> (160 mg, 0.822 mmol) were mixed in CH<sub>2</sub>Cl<sub>2</sub> (4.0 mL) in a screw-capped vial. DPEphos (432 mg, 0.802 mmol) was added to the resulting suspension. The suspension was stirred at room temperature for 2 h. It was then filtered through Celite to remove AgBF<sub>4</sub>, and the filtrate was added to 100 mL of pentane. The precipitate was collected by filtration and washed with three times with 10.0 mL of pentane. [Rh(cod)(DPEphos)]BF<sub>4</sub> was obtained as an orange powder (280 mg, 86%): <sup>1</sup>H NMR (400 MHz, CD<sub>2</sub>Cl<sub>2</sub>, TMS) δ 2.02-2.16 (m, 4H), 2.22-2.36 (m, 4H), 4.40-4.48 (br, 4H), 6.90-7.06 (m, 8H), 7.34-7.52 (m, 20H); <sup>31</sup>P{<sup>1</sup>H} NMR (202.44 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 13.6 (d, *J*<sub>Rh-P</sub> = 121.5 Hz); Anal. Calcd for C<sub>44</sub>H<sub>40</sub>BF<sub>4</sub>OP<sub>2</sub>Rh•CH<sub>2</sub>Cl<sub>2</sub>: C, 58.66; H, 4.59. Found: C, 58.43; H, 4.38.

**General Procedure for the Hydroamination of Vinylarenes with Secondary Amines (Table 2).** In a drybox, vinylarene (4.00 mmol) and amine (1.00 mmol) were added to a suspension of [Rh(cod)(DPEphos)]BF<sub>4</sub> (41.8 mg, 50.0 μmol) in toluene (1.00 mL) in a screw-capped vial. The vial was sealed with a cap containing a PTFE septum and removed from the drybox. The reaction mixture was then stirred at 70 °C for 48 h. After the reaction, the ratio of amine:enamine was determined by GC analysis. The reaction mixture was adsorbed onto silica gel and purified by flash column chromatography.

**N-(2-Phenethyl)morpholine (Table 2, Entry 1).**<sup>2</sup> The general procedure was followed with styrene (458  $\mu$ l, 4.00 mmol) and morpholine (87.4 mg, 1.00 mmol). The reaction mixture was purified by flash column chromatography (20% EtOAc in hexane) to give 136 mg (71%) of the hydroamination product:  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  2.44 (t,  $J$  = 4.6 Hz, 4H), 2.61 (m, 2H), 2.81 (m, 2H), 3.74 (t,  $J$  = 4.6 Hz, 4H), 7.20 (m, 3H), 7.29 (m, 2H);  $^{13}\text{C}\{^1\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  33.3, 53.6, 60.8, 66.9, 126.0, 128.3, 128.6, 140.0; MS, m/z: 191 [M $^+$ ], 100 [CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O $^+$ ], 91 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub> $^+$ ], 77 [C<sub>6</sub>H<sub>5</sub>].

**N-[2-(4-Methylphenyl)ethyl]morpholine (Table 2, Entry 2).**<sup>2</sup> The general procedure was followed with 4-methylstyrene (527  $\mu$ l, 4.00 mmol) and morpholine (86.9 mg, 1.00 mmol). The reaction mixture was purified by flash column chromatography (10% EtOAc in hexane) to give 148 mg (72%) of the hydroamination product.  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  2.31 (s, 3H), 2.52 (t,  $J$  = 4.5 Hz, 4H), 2.57 (m, 2H), 2.76 (m, 2H), 3.74 (t,  $J$  = 4.5 Hz, 4H), 7.09 (s, 4H);  $^{13}\text{C}\{^1\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  20.9, 32.7, 53.6, 60.9, 66.8, 128.4, 129.0, 135.4, 136.9; MS, m/z: 205 [M $^+$ ], 100 [CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O $^+$ ].

**N-[2-(4-Methoxyphenyl)ethyl]morpholine (Table 2, Entry 3).**<sup>2</sup> The general procedure was followed with 4-methoxystyrene (532  $\mu$ l, 4.00 mmol) and morpholine (86.8 mg, 1.00 mmol). The reaction mixture was purified by flash column chromatography (20% EtOAc in hexane) to give 158 mg (71%) of the hydroamination product.  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  2.51 (t,  $J$  = 4.4 Hz, 4H), 2.56 (m, 2H), 2.74 (m, 2H), 3.74 (t,  $J$  = 4.4 Hz, 4H), 3.78 (s, 3H), 6.83 (d,  $J$  = 6.6 Hz, 2H), 7.12 (d,  $J$  = 6.6 Hz, 2H);  $^{13}\text{C}\{^1\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  32.4, 53.7, 55.2, 61.2, 67.0, 113.8, 129.6, 132.1, 158.0; MS, m/z: 221 [M $^+$ ], 135 [CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub>CH<sub>2</sub> $^+$ ], 121 [CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub> $^+$ ], 100 [CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O $^+$ ].

**N-[2-(3, 4-Dimethoxyphenyl)ethyl]morpholine (Table 2, Entry 4).**<sup>2</sup> The general procedure was followed with 4-methoxystyrene (592  $\mu$ l, 4.00 mmol) and morpholine (86.8 mg, 1.00 mmol). The reaction mixture was purified by flash column chromatography (20% EtOAc in

hexane, then 100% EtOAc) to give 176 mg (70%) of the hydroamination product as an oil.  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  2.52 (t,  $J = 4.4$  Hz, 4H), 2.52-2.62 (m, 2H), 2.72-2.79 (m, 2H), 3.75 (t,  $J = 4.4$  Hz, 4H), 3.86 (s, 3H), 3.87 (s, 3H), 6.72-6.77 (m, 2H), 6.77-6.82 (m, 1H);  $^{13}\text{C}\{^1\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  32.8, 53.6, 55.7, 55.8, 60.9, 66.9, 111.0, 111.8, 120.4, 132.6, 147.2, 148.6; MS, m/z: 251 [ $\text{M}^+$ ], 100 [ $\text{CH}_2\text{N}(\text{CH}_2\text{CH}_2)_2\text{O}^+$ ].

**N-[2-(4-Chlorophenyl)ethyl]morpholine (Table 2, Entry 5).<sup>2</sup>** The general procedure was followed with 10 mol% of  $[\text{Rh}(\text{cod})(\text{DPEphos})]\text{BF}_4$  (83.6 mg, 100  $\mu\text{mol}$ ), 4-Chlorostyrene (480  $\mu\text{l}$ , 4.00 mmol) and morpholine (86.7 mg, 1.00 mmol). The suspension was heated at 70 °C for 72 h. The reaction mixture was purified by flash column chromatography (20% EtOAc in hexane) to give 109 mg (48%) of the hydroamination product.  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  2.50 (t,  $J = 4.5$  Hz, 4H), 2.52-2.60 (m, 2H), 2.72-2.80 (m, 2H), 3.73 (t,  $J = 4.5$  Hz, 4H), 7.13 (d,  $J = 8.2$  Hz, 2H), 7.25 (d,  $J = 8.2$  Hz, 2H);  $^{13}\text{C}\{^1\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  32.6, 53.6, 60.5, 66.9, 128.4, 130.0, 131.8, 138.6; m/z: 224 [ $\text{M}^+ - \text{H}$ ], 125 [ $\text{ClC}_6\text{H}_4\text{CH}_2^+$ ], 100 [ $\text{CH}_2\text{N}(\text{CH}_2\text{CH}_2)_2\text{O}^+$ ].

**N-[2-(3-Trifluoromethylphenyl)ethyl]morpholine (Table 2, Entry 6).<sup>2</sup>** The general procedure was followed with 10 mol% of  $[\text{Rh}(\text{cod})(\text{DPEphos})]\text{BF}_4$  (83.6 mg, 100  $\mu\text{mol}$ ), 2.0 eq. of 3-trifluoromethylstyrene (297  $\mu\text{l}$ , 2.00 mmol) and morpholine (87.5 mg, 1.00 mmol). The suspension was heated at 70 °C for 72 h. The reaction mixture was purified by flash column chromatography (20% EtOAc in hexane) to give 105 mg (40%) of the hydroamination product.  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  2.45-2.55 (m, 4H), 2.58-2.65 (m, 2H), 2.84-2.92 (m, 2H), 3.76 (t,  $J = 4.6$  Hz, 4H), 7.39-7.44 (m, 2H), 7.46-7.52 (m, 2H);  $^{13}\text{C}\{^1\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  33.0, 53.6, 60.3, 66.9, 123.0 (q,  $J = 3.8$  Hz), 124.2 (q,  $J = 272.2$  Hz), 125.4 (q,  $J = 3.8$  Hz), 128.8, 130.5 (q,  $J = 32.2$  Hz), 130.9, 132.1, 141.0; m/z: 258 [ $\text{M}^+ - \text{H}$ ], 100 [ $\text{CH}_2\text{N}(\text{CH}_2\text{CH}_2)_2\text{O}^+$ ].

**N-(2-Phenethyl)piperidine (Table 2, Entry 7).<sup>3</sup>** The general procedure was followed with styrene (458  $\mu\text{l}$ , 4.00 mmol) and piperidine (85.1 mg, 1.00 mmol). The suspension was

heated at 75 °C for 72 h. The reaction mixture was purified by flash column chromatography (10% EtOAc in hexane) to give 108 mg (57%) of the hydroamination product. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, TMS) δ 1.40-1.49 (m, 2H), 1.57-1.66 (m, 4H), 2.34-2.56 (m, 4H), 2.51-2.55 (m, 2H), 2.77-2.83 (m, 2H), 7.14-7.22 (m, 3H), 7.24-7.31 (m, 2H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 24.4, 25.9, 33.5, 54.5, 61.4, 125.9, 128.3, 128.7, 140.6; MS, m/z: 188 [M<sup>+</sup> - H], 105 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH<sub>2</sub><sup>+</sup>], 98 [CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub><sup>+</sup>], 91 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub><sup>+</sup>].

**N-[2-(3, 4-Dimethoxyphenyl)ethyl]piperidine (Table 2, Entry 8).**<sup>4</sup> The general procedure was followed with 3, 4-dimethoxystyrene (592 µl, 4.00 mmol) and piperidine (87.3 mg, 1.02 mmol). The reaction mixture was purified by flash column chromatography on silica gel (20% EtOAc in hexane) to give 169 mg (66%) of the hydroamination product as an oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, TMS) δ 1.41-1.51 (m, 2H), 1.58-1.67 (m, 4H), 2.40-2.57 (m, 4H), 2.50-2.59 (m, 2H), 2.72-2.80 (m, 2H), 3.85 (s, 3H), 3.87 (s, 3H), 6.72-6.81 (m, 3H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 24.2, 25.8, 33.0, 54.4, 55.6, 55.7, 61.4, 111.0, 111.8, 120.3, 132.9, 147.1, 148.6; MS, m/z: 249 [M<sup>+</sup>], 165 [(CH<sub>3</sub>O)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub><sup>+</sup>], 151 [(CH<sub>3</sub>O)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>CH<sub>2</sub><sup>+</sup>], 98 [CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>CH<sub>2</sub><sup>+</sup>].

**1-Phenyl-4-(2-phenylethyl)piperazine (Table 2, Entry 9).** The general procedure was followed with styrene (458 µl, 4.00 mmol) and 4-phenylpiperazine (162 mg, 1.00 mmol). The suspension was heated at 75 °C for 72 h. The reaction mixture was purified by flash column chromatography (10% EtOAc in hexane) to give 154 mg (58%) of the hydroamination product. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, TMS) δ 2.61-2.68 (m, 2H), 2.69 (t, *J* = 5.0 Hz, 4H), 2.81-2.88 (m, 2H), 3.23 (t, *J* = 5.0 Hz, 4H), 6.86 (t, *J* = 7.3 Hz, 1H), 6.94 (d, *J* = 8.1 Hz, 2H), 7.17-7.33 (m, 7H); <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 33.6, 49.1, 53.2, 60.5, 116.0, 119.6, 126.0, 128.4, 128.7, 129.1, 140.2, 151.2; MS, m/z: 266 [M<sup>+</sup>], 175 [CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NC<sub>6</sub>H<sub>5</sub><sup>+</sup>], 91 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub><sup>+</sup>], 77 [C<sub>6</sub>H<sub>5</sub><sup>+</sup>]; Anal. Calcd for C<sub>18</sub>H<sub>22</sub>N<sub>2</sub>: C, 81.16; H, 8.32; N, 10.52. Found: C, 81.00; H, 8.11; N, 10.25.

**N-(2-Phenylethyl)-4-*tert*-butyl piperazinecarboxylate (Table 2, Entry 10).<sup>5</sup>** The general procedure was followed with styrene (458  $\mu$ l, 4.00 mmol) and *tert*-Butyl 1-piperazinecarboxylate (186 mg, 1.00 mmol) in 0.50 mL of toluene. The suspension was heated at 70 °C for 72 h. The reaction mixture was purified by flash column chromatography (20% EtOAc in hexane) to give 153 mg (53%) of the hydroamination product.  $^1$ H NMR (400 MHz, CDCl<sub>3</sub>, TMS)  $\delta$  1.45 (s, 9H), 2.46 (t,  $J$  = 4.5 Hz, 4H), 2.56-2.64 (m, 2H), 2.77-2.84 (m, 2H), 3.46 (t,  $J$  = 5.0 Hz, 4H), 7.17-7.23 (m, 3H), 7.25-7.32 (m, 2H);  $^{13}$ C{ $^1$ H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  28.4, 33.4, 43.2 (broad), 43.9 (broad), 52.9, 60.4, 79.5, 126.0, 128.3, 128.6, 140.0, 154.7; MS, m/z: 290 [M<sup>+</sup>], 217 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NCO<sup>+</sup>], 199 [CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>NCO<sub>2</sub>'Bu<sup>+</sup>], 105 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH<sub>2</sub><sup>+</sup>], 91 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub><sup>+</sup>].

**N-(2-Phenylethyl)-2,5-dimethylmorpholine (Table 2, Entry 11).** The general procedure was followed with styrene (458  $\mu$ l, 4.00 mmol) and 2,5-dimethylmorpholine (115 mg, 1.00 mmol) in 0.50 mL of toluene. The suspension was heated at 75 °C for 72 h. The reaction mixture was purified by flash column chromatography (20% EtOAc in hexane) to give 111 mg (51%) of the hydroamination product.  $^1$ H NMR (400 MHz, CDCl<sub>3</sub>, TMS)  $\delta$  1.18 (d,  $J$  = 6.3 Hz, 6H), 1.79 (t,  $J$  = 10.7 Hz, 2H), 2.52-2.62 (m, 2H), 2.76-2.86 (m, 4H), 3.66-3.76 (m, 2H), 7.17-7.23 (m, 3H), 7.24-7.32 (m, 2H);  $^{13}$ C{ $^1$ H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  19.2, 33.3, 59.5, 60.5, 71.7, 126.1, 128.4, 128.7, 140.2; MS, m/z: 218 [M<sup>+</sup> - H], 128 [CH<sub>2</sub>N(CH(CH<sub>3</sub>)CH<sub>2</sub>)<sub>2</sub>O<sup>+</sup>], 105 [(C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH<sub>2</sub><sup>+</sup>)], 91 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub><sup>+</sup>]; Anal. Calcd for C<sub>14</sub>H<sub>21</sub>NO: C, 76.67; H, 9.65; N, 6.39. Found: C, 76.43; H, 9.44; N, 6.24.

**N-[2-(4-Methoxyphenyl)ethyl]perhydroisoquinoline (Table 2, Entry 12).** The general procedure was followed with 4-methoxystyrene (532  $\mu$ l, 4.00 mmol) and a diastereomeric mixture of perhydroisoquinoline (140 mg, 1.00 mmol). The reaction mixture was purified by flash column chromatography (10% EtOAc in hexane) to give 170 mg (62%) of the two diastereomeric hydroamination products. A second column was run to obtain the pure major

isomer for the purpose of obtaining spectral data.  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  0.82-1.06 (m, 2H), 1.18-1.45 (m, 4H), 1.51-1.80 (7H), 1.93-2.03 (m, 1H), 2.46-2.56 (m, 2H), 2.70-2.80 (m, 2H), 2.81-2.89 (m, 1H), 2.97-3.05 (m, 1H), 3.78 (s, 3H), 6.79-6.86 (m, 2H), 7.08-7.15 (m, 2H);  $^{13}\text{C}\{\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  26.1, 26.5, 30.7, 32.7, 32.9, 32.9, 41.7, 41.9, 54.4, 55.2, 60.4, 61.2, 113.8, 129.6, 132.5, 157.9; MS, m/z: 272 [ $\text{M}^+ - \text{H}$ ], 152 [ $\text{CH}_2\text{NC}_9\text{H}_{16}^+$ ], 135 [ $\text{CH}_3\text{OC}_6\text{H}_4\text{CH}_2\text{CH}_2^+$ ], 121 [ $\text{CH}_3\text{OC}_6\text{H}_4\text{CH}_2^+$ ]; Anal. Calcd for  $\text{C}_{18}\text{H}_{27}\text{NO}$ : C, 79.07; H, 9.95; N, 5.12. Found: C, 78.99; H, 10.09; N, 5.24.

***N*-[2-(4-Methylphenyl)ethyl]dimethylamine (Table 2, Entry 13).<sup>6</sup>** In a dry box, 4-methylstyrene (527  $\mu\text{l}$ , 4.00 mmol) and dodecane (GC internal standard) was added to a suspension of  $[\text{Rh}(\text{cod})(\text{DPEphos})]\text{BF}_4$  (41.8 mg, 50.0  $\mu\text{mol}$ ) in toluene (0.50 mL) in a screw-capped vial. The vial was sealed with a cap containing a PTFE septum and removed from the drybox. Then a 2.0 M solution of dimethylamine in THF (447 mg, 526  $\mu\text{L}$ , 1.05 mmol) was added to the vial, and the reaction mixture was heated at 70 °C for 72 h. The yield of hydroamination products (50%) and amine : enamine selectivity were determined by GC analysis. An authentic sample for GC analysis was obtained by flush column chromatography (100% EtOAc).  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  2.31 (s, 6H), 2.31 (s, 3H), 2.49-2.58 (m, 2H), 2.70-2.79 (m, 2H), 7.09 (s, 4H);  $^{13}\text{C}\{\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  21.0, 33.7, 45.3, 61.6, 128.6, 129.1, 135.5, 137.0; MS, m/z: 163 [ $\text{M}^+ - \text{H}$ ], 119 [ $\text{CH}_3\text{C}_6\text{H}_4\text{CH}_2\text{CH}_2^+$ ], 105 [ $\text{CH}_3\text{C}_6\text{H}_4\text{CH}_2^+$ ], 58 [ $\text{CH}_2\text{N}(\text{CH}_3)_2^+$ ].

***N*-[2-(3, 4-Dimethoxyphenyl)ethyl]dimethylamine (Table 2, Entry 14).<sup>7</sup>** In a dry box, 3,4-dimethoxystyrene (592  $\mu\text{l}$ , 4.00 mmol) was added to  $[\text{Rh}(\text{cod})(\text{DPEphos})]\text{BF}_4$  (41.8 mg, 50.0  $\mu\text{mol}$ ) in a screw-capped vial. The vial was sealed with a cap containing a PTFE septum and removed from the drybox. A 2.0 M solution of dimethylamine in THF solution (427 mg, 503  $\mu\text{l}$ , 1.01 mmol) was then added to the vial, and the reaction mixture was heated at 70 °C for 72 h. The reaction mixture was purified by flash column chromatography (100% EtOAc) to give 156

mg (74%) of the hydroamination product.  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  2.30 (s, 6H), 2.48-2.56 (m, 2H), 2.70-2.76 (m, 2H), 3.85 (s, 3H), 3.88 (s, 3H), 6.74 (d,  $J$  = 7.7 Hz, 2H), 6.80 (d,  $J$  = 7.7 Hz, 1H);  $^{13}\text{C}\{\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  33.8, 45.3, 55.7, 55.8, 61.6, 111.1, 111.8, 120.3, 132.7, 147.2, 148.7; MS, m/z: 210 [ $\text{M}^+$ ], 165 [ $(\text{CH}_3\text{O})_2\text{C}_6\text{H}_3\text{CH}_2\text{CH}_2^+$ ], 151 [ $(\text{CH}_3\text{O})_2\text{C}_6\text{H}_3\text{CH}_2^+$ ], 58 [ $\text{CH}_2\text{N}(\text{CH}_3)_2^+$ ].

**2-(2-Dimethylaminoethyl)pyridine (Table 2, Entry 15).**<sup>8</sup> In a dry box, 2-vinylpyridine (431  $\mu\text{l}$ , 4.00 mmol) and dodecane (GC internal standard) were added to a suspension of  $[\text{Rh}(\text{cod})(\text{DPEphos})]\text{BF}_4$  (41.8 mg, 50.0  $\mu\text{mol}$ ) in toluene (0.50 mL) in a screw-capped vial. The vial was sealed with a cap containing a PTFE septum and removed from the drybox. Dimethylamine was then added as a 2.0 M solution in THF (440 mg, 517  $\mu\text{L}$ , 1.03 mmol), and the reaction mixture was heated at 70 °C for 48 h. The yield of hydroamination product (79%) and amine : enamine selectivity were determined by GC analysis. MS, m/z: 150 [ $\text{M}^+ - \text{H}$ ], 106 [ $\text{C}_5\text{H}_4\text{NCH}_2\text{CH}_2^+$ ], 79 [ $\text{C}_5\text{H}_5\text{N}^+$ ], 58 [ $\text{CH}_2\text{N}(\text{CH}_3)_2^+$ ].

**Identification of the enamine side products.** All the enamines formed as side product have been published previously and were identified by GC/MS analysis of crude reaction mixtures.

**(E)-N-(2-Phenylethenyl)morpholine (Table 2, Entry 1).**<sup>2</sup> MS, m/z: 189 [ $\text{M}^+$ ], 104 [ $(\text{C}_6\text{H}_5\text{CHCH}_2^+)$ , 91 [ $\text{C}_6\text{H}_5\text{CH}_2^+$ ], 77 [ $\text{C}_6\text{H}_5^+$ ].

**(E)-N-[2-(4-Methylphenyl)ethenyl]morpholine (Table 2, Entry 2).**<sup>2</sup> MS, m/z: 203 [ $\text{M}^+$ ], 188 [ $\text{M}^+ - \text{H}$ ], 119 [ $\text{CH}_3\text{C}_6\text{H}_4\text{CHCH}_2^+$ ], 105 [ $\text{CH}_3\text{C}_6\text{H}_4\text{CH}_2^+$ ], 91 [ $\text{C}_6\text{H}_5\text{CH}_2^+$ ].

**(E)-N-[2-(4-Methoxyphenyl)ethenyl]morpholine (Table 2, Entry 3).**<sup>2</sup> MS, m/z: 219 [ $\text{M}^+$ ], 204 [ $\text{M}^+ - \text{CH}_3$ ], 134 [ $\text{CH}_3\text{OC}_6\text{H}_4\text{CHCH}_2^+$ ].

**(E)-N-[2-(3, 4-Dimethoxyphenyl)ethenyl]morpholine (Table 2, Entry 4).**<sup>2</sup> MS, m/z: 249 [ $\text{M}^+$ ], 234 [ $\text{M}^+ - \text{CH}_3$ ].

**(E)-N-[2-(4-Chlorophenyl)ethenyl]morpholine (Table 2, Entry 5).<sup>2</sup>** MS, m/z: 223 [M<sup>+</sup>], 138 [ClC<sub>6</sub>H<sub>4</sub>CHCH<sub>2</sub><sup>+</sup>], 100 [CH<sub>2</sub>N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>O<sup>+</sup>].

**(E)-N-[2-(3-Trifluoromethylphenyl)ethenyl]morpholine (Table 2, Entry 6).<sup>2</sup>** MS, m/z: 257 [M<sup>+</sup>].

**(E)-N-(2-Phenylethenyl)piperidine (Table 2, Entry 7).<sup>9</sup>** MS, m/z: 187 [M<sup>+</sup>], 130 [C<sub>6</sub>H<sub>5</sub>CHCHNCH<sub>2</sub><sup>+</sup>], 104 [C<sub>6</sub>H<sub>5</sub>CHCH<sub>2</sub><sup>+</sup>], 91 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub><sup>+</sup>].

**(E)-N-[2-(3, 4-Dimethoxyphenyl)ethenyl]piperidine (Table 2, Entry 8).<sup>4</sup>** MS, m/z: 247 [M<sup>+</sup>], 165 [(CH<sub>3</sub>O)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>CHCH<sub>2</sub><sup>+</sup>], 151 [(CH<sub>3</sub>O)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>CH<sub>2</sub><sup>+</sup>].

**(E)-1-Phenyl-4-(2-phenylethenyl)piperazine (Table 2, Entry 9).** MS, m/z: 264 [M<sup>+</sup>], 104 [C<sub>6</sub>H<sub>5</sub>CHCH<sub>2</sub><sup>+</sup>], 91 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub><sup>+</sup>].

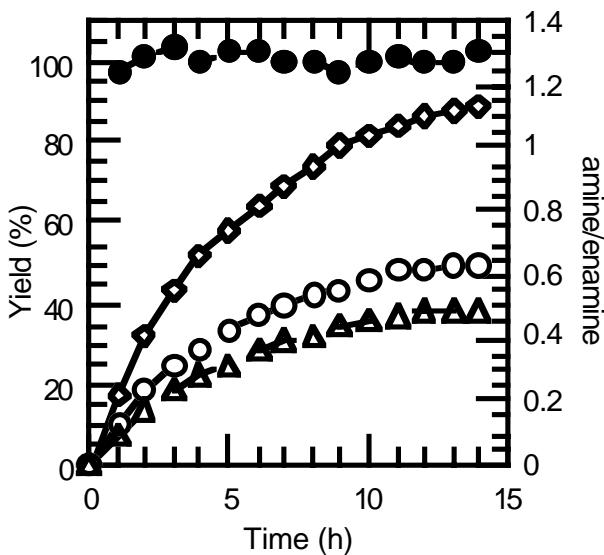
**(E)-N-(2-Phenylethenyl)-4-*tert*-butyl piperazinecarboxylate (Table 2, Entry 10).** MS, m/z: 288 [M<sup>+</sup>], 215 [M<sup>+</sup> - OC<sub>4</sub>H<sub>9</sub> ], 104 [C<sub>6</sub>H<sub>5</sub>CHCH<sub>2</sub><sup>+</sup>], 91 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub><sup>+</sup>], 77 [C<sub>6</sub>H<sub>5</sub><sup>+</sup>].

**(E)-N-(2-Phenylethenyl)-2,5-dimethylmorpholine (Table 2, Entry 11).** MS, m/z: 217 [M<sup>+</sup>], 128 [CH<sub>2</sub>N(CH(CH<sub>3</sub>)CH<sub>2</sub>)<sub>2</sub>O<sup>+</sup>], 91 [C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub><sup>+</sup>].

**(E)-N-[2-(4-Methoxyphenyl)ethenyl]perhydroisoquinoline (Table 2, Entry 12).** MS, m/z: 271 [M<sup>+</sup>], 256 [M<sup>+</sup> - CH<sub>3</sub>], 134 [CH<sub>3</sub>OC<sub>6</sub>H<sub>4</sub>CHCH<sub>2</sub><sup>+</sup>].

**(E)-N-[2-(4-Methylphenyl)ethenyl]dimethylamine (Table 2, Entry 13).** MS, m/z: 161 [M<sup>+</sup> - H], 58 [CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>].

**(E)-N-[2-(3, 4-Dimethoxyphenyl)ethenyl]dimethylamine (Table 2, Entry 14).** MS, m/z: 207 [M<sup>+</sup> - H], 163 [(CH<sub>3</sub>O)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>CHCH<sup>+</sup>], 58 [CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>].


**(E)-2-(2-Dimethylaminoethyl)pyridine (Table 2, Entry 15).<sup>10</sup>** MS, m/z: 149 [M<sup>+</sup>], 105 [C<sub>5</sub>H<sub>4</sub>NCH<sub>2</sub>CH<sub>2</sub><sup>+</sup>], 79 [C<sub>5</sub>H<sub>5</sub>N], 58 [CH<sub>2</sub>N(CH<sub>3</sub>)<sub>2</sub><sup>+</sup>].

**Reactions of *p*-Methyl Styrene with Morpholine in the Presence of (E)-N-(2-Phenylethenyl)morpholine (Scheme 1).** In a drybox, morpholine (17  $\mu$ l, 0.20 mmol), *p*-methyl styrene (106  $\mu$ l, 0.800 mmol) and (E)-N-(2-phenylethenyl)morpholine (38 mg, 0.20 mmol) were

added to a screw-capped vial containing a suspension of  $[\text{Rh}(\text{cod})(\text{DPEphos})]\text{BF}_4$  (8.4 mg, 20  $\mu\text{mol}$ ) in 0.20 mL of toluene. The vial was sealed with a cap containing a PTFE septum and removed from the drybox. The reaction mixture was stirred at 70 °C. After 48 h, the yields were determined by GC analysis.

**Reactions Conducted with a Combination of Styrene and *m*-Trifluoromethylstyrene (Scheme 2).** In a drybox, morpholine (17  $\mu\text{l}$ , 0.20 mmol), styrene (46  $\mu\text{l}$ , 0.40 mmol) and *m*-trifluoromethylstyrene (60  $\mu\text{l}$ , 0.40 mmol) were added to a screw-capped vial containing a suspension of  $[\text{Rh}(\text{cod})(\text{DPEphos})]\text{BF}_4$  (8.4 mg, 20  $\mu\text{mol}$ ) in 0.20 mL of toluene). The vial was sealed with a cap containing a PTFE septum and removed from the drybox. The reaction mixture was stirred at 70 °C. After 48 h, the ratios of amines to enamines were determined by GC analysis.

**Analysis of the Ratio of Amine : Enamine versus Time.** In a drybox, 950  $\mu\text{l}$  of styrene were mixed with toluene to create 1.00 mL of total volume. To a screw-capped vial containing morpholine (17  $\mu\text{l}$ , 0.20 mmol) and  $[\text{Rh}(\text{cod})(\text{DPEphos})]\text{BF}_4$  (8.4 mg, 20  $\mu\text{mol}$ ) was added 0.20 mL of the stock solution. The vial was sealed with a cap containing a PTFE septum and removed from the drybox. The reaction mixture was stirred at 70 °C. The yield of amine and enamine and the ratio of amine:enamine was determined by GC analysis, correcting for the different response factors of the two materials.



**Figure S1.** Appearance of hydroamination and enamine products. :  $\diamond$  = total yield of amine and enamine;  $\circ$  = amine yield;  $\Delta$  = enamine yield;  $\bullet$  = amine : enamine ratio.

**Synthesis of (*E*)-*N*-(2-Phenylethenyl)morpholine.<sup>4</sup>** Phenylacetaldehyde (1.60 g, 13.3 mmol) and morpholine (4.00 g, 46.0 mmol) were stirred at room temperature for 3 h with 5.0 g of 4A Molecular Sieves. The reaction mixture was concentrated under vacuum, and the product was isolated by distillation. (1.76 g, 71%):  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ , TMS)  $\delta$  3.03 (t,  $J$  = 4.8 Hz, 4H), 3.76 (t,  $J$  = 4.8 Hz, 4H), 5.38 (d,  $J$  = 14.0 Hz, 1H), 6.62 (d,  $J$  = 14.0 Hz, 1H), 7.05 (m, 1H), 7.23 (m, 4H);  $^{13}\text{C}\{\text{H}\}$  NMR (100 MHz,  $\text{CDCl}_3$ )  $\delta$  48.9, 66.4, 101.4, 124.2, 124.4, 128.5, 138.6, 139.6; MS: m/z: 189, 158, 130, 104, 91, 77.

## References

- (1) Kranenburg, M.; Burgt, Y. E. M. v. d.; Kamer, P. C. J.; Leeuwen, P. W. N. M. v.; Goubitz, K.; Fraanje, J. *Organometallics* **1995**, *14*, 3081-3089.
- (2) Beller, M.; Trauthwein, H.; Eichberger, M.; Breindl, C.; Herwig, J.; Müller, T. E.; Thiel, O. R. *Chem. Eur. J.* **1999**, *5*, 1306-1319.
- (3) Bowman, R. W.; Stephenson, P. T.; Nicholas, N. K.; Young, A. R. *Tetrahedron* **1995**, *51*, 7959-7980.

(4) Beller, M.; Eichberger, M.; Trauthwein, H. *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 2225-2227.

(5) Bhattacharyya, S.; Chatterjee, A.; Williamson, J. S. *Synlett* **1995**, 1079-1080.

(6) W. H. Saunders, J.; Bushman, D. G.; Cockerill, A. F. *J. Am. Chem. Soc.* **1968**, *90*, 1775-1779.

(7) Liang, C. D. *Tetrahedron Lett.* **1986**, *27*, 1971-1974.

(8) Taki, M.; Teramae, S.; Nagamoto, S.; Tachi, Y.; Kitagawa, T.; Itoh, S.; Fukuzumi, S. *J. Am. Chem. Soc.* **2002**, *124*, 6367-6377.

(9) Schlecht, M. F.; Tsarouhtsis, D.; Lipovac, M. N.; Debler, E. A. *J. Med. Chem.* **1990**, *33*, 386-394.

(10) Cassity, R. P.; Larry, L. T.; Wolfe, J. F. *J. Org. Chem.* **1978**, *43*, 2286-2288.