Supporting Information

Selective Oxygenation of Ring-Substituted Toluenes with Electron Donating and Withdrawing Substituents by Molecular Oxygen via Photoinduced Electron Transfer

Kei Ohkubo, a Kyou Suga, a Kohei Morikawa, b and Shunichi Fukuzumi a, *

a Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation (JST), Suita, Osaka 565-0871, Japan

b Showa Denko, K. K., Kawasaki, Kanagawa, 210-0867, Japan

* To whom correspondence should be addressed.

E-mail: fukuzumi@ap.chem.eng.osaka-u.ac.jp
Figure S1. Stern-Volmer plots for the fluorescence quenching of 1,2,4,5-tetracyanobenzene (○), tetrafluoro-\(p\)-dicyanobenzene (△), tetrafluoro-\(o\)-dicyanobenzene (□), tetrafluoro-\(m\)-dicyanobenzene (●) and 1,4-dicyanobenzene (▲) by \(p\)-tolunitrile in MeCN at 298 K.
Figure S2. Transient absorption spectra observed by photoexcitation of the argon- (○), air- (△) and oxygen- (●) saturated CHCl₃ solutions of AcrPh⁺ (1.0 x 10⁻⁴ M) and p-xylene (1.0 x 10⁻¹ M) at 1.0 µs after laser excitation at 298 K.
Figure S3. Decay time profile of absorbance at 500 nm observed by photoexcitation of an argon-saturated CHCl₃ solution of AcrPh⁺ (1.0 × 10⁻⁴ M) and p-xylene (1.0 × 10⁻¹ M) at 298 K. Inset; second-order plot.
Figure S4. Stern-Volmer plots for the fluorescence quenching of AcrPh$^+$ (1.0×10^{-5} M) by p-xylene (\bigcirc), m-xylene (\triangle) and o-xylene (\square) in MeCN at 298 K.
Figure S5. Dependence of the yield of p-tolualdehyde on irradiation time for the photooxygenation of p-xylene catalyzed by (1.0 x 10^{-2} \text{ M}) in oxygen-saturated CHCl$_3$ (\triangle) and MeCN (○) determined by 1H NMR spectroscopy.