N(33)-Pd(4)-N(3) 88.8(4)
N(29)-Pd(4)-N(15) 92.2(5)
N(33)-Pd(4)-N(15) 179.6(5)
N(3)-Pd(4)-N(15) 91.3(4)
C(036)-Pd(5)-N(31) 127(3)
C(036)-Pd(5)-N(26) 91(2)
N(31)-Pd(5)-N(26) 89.1(5)
C(036)-Pd(5)-N(16) 90(2)
N(31)-Pd(5)-N(16) 89.5(5)
N(26)-Pd(5)-N(16) 178.6(5)
C(036)-Pd(5)-N(22) 53(3)
N(31)-Pd(5)-N(22) 178.5(5)
N(26)-Pd(5)-N(22) 89.4(5)
N(16)-Pd(5)-N(22) 92.0(4)
N(35)-Pd(6)-N(12) 90.0(5)
N(35)-Pd(6)-N(20) 176.9(6)
N(12)-Pd(6)-N(20) 91.1(5)
N(35)-Pd(6)-N(36) 85.4(7)
N(12)-Pd(6)-N(36) 175.2(6)
N(20)-Pd(6)-N(36) 93.6(6)
C(16)-N(1)-C(3) 116.7(10)
C(65)-N(2)-C(3) 116.0(10)
C(9)-N(3)-C(86) 117.1(11)
C(9)-N(3)-Pd(4) 118.2(8)
C(86)-N(3)-Pd(4) 124.3(9)
C(2)-N(4)-C(41) 122.1(11)
C(2)-N(4)-Pd(3) 120.2(8)
C(41)-N(4)-Pd(3) 117.6(9)
C(10)-N(5)-C(14) 121.3(11)
C(10)-N(5)-Pd(1) 119.2(8)
C(14)-N(5)-Pd(1) 119.2(9)
C(28)-N(6)-C(13) 115.5(9)
C(25)-N(7)-C(55) 125.2(12)
C(25)-N(7)-Pd(3) 117.9(9)
C(55)-N(7)-Pd(3) 116.9(9)
C(42)-N(8)-C(56) 120.7(10)
C(42)-N(8)-Pd(1) 119.8(9)
C(56)-N(8)-Pd(1) 119.3(8)
C(43)-N(9)-C(1) 122.0(10)
C(43)-N(9)-Pd(2) 118.6(8)
C(1)-N(9)-Pd(2) 119.3(8)
C(65)-N(10)-C(16) 110.5(10)
C(28)-N(11)-C(24) 114.9(9)
C(29)-N(12)-C(74) 117.3(13)
C(29)-N(12)-Pd(6) 122.4(11)
C(74)-N(12)-Pd(6) 120.3(9)
C(18)-N(13)-C(68) 117.7(10)
C(18)-N(14)-C(37) 117.2(10)
C(70)-N(15)-C(22) 124.8(12)
C(70)-N(15)-Pd(4) 117.9(10)
C(22)-N(15)-Pd(4) 117.2(8)
C(38)-N(16)-C(12) 120.6(11)
C(38)-N(16)-Pd(5) 120.4(9)
C(12)-N(16)-Pd(5) 119.0(8)
C(17)-N(17)-C(26) 123.1(10)
C(17)-N(17)-Pd(2) 119.9(8)
C(26)-N(17)-Pd(2) 117.1(8)
C(62)-N(18)-C(49) 110.4(12)
C(5)-N(19)-C(49) 117.5(12)
C(78)-N(20)-C(57) 123.0(17)
C(78)-N(20)-Pd(6) 120.5(15)
C(57)-N(20)-Pd(6) 116.4(12)
C(24)-N(21)-C(13) 116.0(9)
C(85)-N(22)-C(036) 164(3)
C(85)-N(22)-C(87) 122.6(12)
C(036)-N(22)-C(87) 73(2)
C(85)-N(22)-Pd(5) 121.2(9)
C(036)-N(22)-Pd(5) 43(2)
C(87)-N(22)-Pd(5) 116.2(10)
C(103)-N(23)-Pd(1) 111.8(9)
C(106)-N(24)-Pd(2) 108.1(11)
C(109)-N(25)-Pd(3) 108.9(14)
C(107)-N(26)-Pd(5) 110.6(12)
C(104)-N(27)-Pd(1) 107.8(10)
C(108)-N(28)-Pd(3) 107.4(12)
C(110)-N(29)-Pd(4) 108.9(13)
C(68)-N(30)-C(37) 117.1(10)
C(112)-N(31)-Pd(5) 104.6(12)
C(62)-N(32)-C(5) 110.0(12)
C(105)-N(33)-Pd(4) 111.1(12)
C(111)-N(34)-Pd(2) 109.0(14)
C(124)-N(35)-Pd(6) 111.0(16)
C(113)-N(36)-Pd(6) 106.5(15)
N(9)-C(1)-C(21) 120.3(10)
N(4)-C(2)-C(4) 119.2(10)
N(1)-C(3)-N(2) 121.9(10)
N(1)-C(3)-C(8) 119.4(10)
N(2)-C(3)-C(8) 118.6(10)
C(2)-C(4)-C(52) 121.9(10)
C(2)-C(4)-C(13) 117.6(10)
C(52)-C(4)-C(13) 120.5(10)
N(19)-C(5)-N(32) 126.9(12)
N(19)-C(5)-C(50) 119.7(13)
N(32)-C(5)-C(50) 113.4(12)
C(7)-C(6)-C(12) 121.8(11)
C(7)-C(6)-C(28) 120.1(11)
C(12)-C(6)-C(28) 118.1(10)
C(6)-C(7)-C(69) 118.7(12)
C(17)-C(8)-C(23) 120.4(10)
C(17)-C(8)-C(3) 119.1(10)
C(23)-C(8)-C(3) 120.4(11)
C(30)-C(9)-N(3) 117.1(11)
N(5)-C(10)-C(15) 121.3(10)
C(22)-C(11)-C(20) 125.6(12)
C(22)-C(11)-C(16) 117.7(11)
C(20)-C(11)-C(16) 116.6(12)
N(16)-C(12)-C(6) 120.9(11)
N(6)-C(13)-N(21) 123.3(10)
N(6)-C(13)-C(4) 119.9(10)
N(21)-C(13)-C(4) 116.7(10)
N(5)-C(14)-C(48) 119.8(12)
C(10)-C(15)-C(53) 122.1(11)
C(10)-C(15)-C(24) 119.6(10)
C(53)-C(15)-C(24) 118.2(11)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)-C(16)-N(10)</td>
<td>127.1(11)</td>
</tr>
<tr>
<td>N(1)-C(16)-C(11)</td>
<td>117.1(11)</td>
</tr>
<tr>
<td>N(10)-C(16)-C(11)</td>
<td>115.8(10)</td>
</tr>
<tr>
<td>N(17)-C(17)-C(8)</td>
<td>119.1(10)</td>
</tr>
<tr>
<td>N(13)-C(18)-N(14)</td>
<td>121.8(10)</td>
</tr>
<tr>
<td>N(13)-C(18)-C(21)</td>
<td>120.8(10)</td>
</tr>
<tr>
<td>N(14)-C(18)-C(21)</td>
<td>117.3(10)</td>
</tr>
<tr>
<td>C(46)-C(19)-C(56)</td>
<td>121.4(12)</td>
</tr>
<tr>
<td>C(46)-C(19)-C(65)</td>
<td>121.7(11)</td>
</tr>
<tr>
<td>C(56)-C(19)-C(65)</td>
<td>116.8(11)</td>
</tr>
<tr>
<td>C(11)-C(20)-C(82)</td>
<td>114.5(14)</td>
</tr>
<tr>
<td>C(44)-C(21)-C(1)</td>
<td>120.4(11)</td>
</tr>
<tr>
<td>C(44)-C(21)-C(18)</td>
<td>118.4(11)</td>
</tr>
<tr>
<td>C(1)-C(21)-C(18)</td>
<td>121.1(10)</td>
</tr>
<tr>
<td>N(15)-C(22)-C(11)</td>
<td>117.0(11)</td>
</tr>
<tr>
<td>C(67)-C(23)-C(8)</td>
<td>118.5(12)</td>
</tr>
<tr>
<td>N(21)-C(24)-N(11)</td>
<td>123.4(10)</td>
</tr>
<tr>
<td>N(21)-C(24)-C(15)</td>
<td>119.2(10)</td>
</tr>
<tr>
<td>N(11)-C(24)-C(15)</td>
<td>117.3(10)</td>
</tr>
<tr>
<td>N(7)-C(25)-C(50)</td>
<td>119.3(12)</td>
</tr>
<tr>
<td>N(17)-C(26)-C(67)</td>
<td>119.0(12)</td>
</tr>
<tr>
<td>C(75)-C(27)-C(115)</td>
<td>121.6(13)</td>
</tr>
<tr>
<td>C(75)-C(27)-C(60)</td>
<td>114.7(13)</td>
</tr>
<tr>
<td>C(115)-C(27)-C(60)</td>
<td>123.7(13)</td>
</tr>
<tr>
<td>N(11)-C(28)-N(6)</td>
<td>126.8(10)</td>
</tr>
<tr>
<td>N(11)-C(28)-C(6)</td>
<td>115.6(10)</td>
</tr>
<tr>
<td>N(6)-C(28)-C(6)</td>
<td>117.5(10)</td>
</tr>
<tr>
<td>N(12)-C(29)-C(58)</td>
<td>124.4(16)</td>
</tr>
<tr>
<td>C(9)-C(30)-C(59)</td>
<td>124.4(11)</td>
</tr>
<tr>
<td>C(9)-C(30)-C(37)</td>
<td>119.8(11)</td>
</tr>
<tr>
<td>C(59)-C(30)-C(37)</td>
<td>115.7(11)</td>
</tr>
<tr>
<td>C(32)-C(31)-C(36)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(33)-C(32)-C(31)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(34)-C(33)-C(32)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(35)-C(34)-C(33)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(34)-C(35)-C(36)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(35)-C(36)-C(31)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(35)-C(36)-C(60)</td>
<td>117.5(16)</td>
</tr>
</tbody>
</table>
C(31)-C(36)-C(60) 122.5(16)
N(30)-C(37)-N(14) 121.1(10)
N(30)-C(37)-C(30) 123.4(10)
N(14)-C(37)-C(30) 115.5(11)
N(16)-C(38)-C(69) 122.0(13)
C(45)-C(39)-C(66) 122.0(13)
C(45)-C(39)-C(100) 122.3(13)
C(66)-C(39)-C(100) 115.7(12)
C(74)-C(40)-C(80) 124.6(13)
C(74)-C(40)-C(68) 119.1(12)
C(80)-C(40)-C(68) 116.2(12)
N(4)-C(41)-C(77) 118.6(12)
N(8)-C(42)-C(73) 121.1(12)
N(9)-C(43)-C(47) 119.7(12)
C(21)-C(44)-C(47) 119.0(13)
C(39)-C(45)-C(64) 118.5(13)
C(39)-C(45)-C(94) 123.0(14)
C(64)-C(45)-C(94) 118.4(14)
C(19)-C(46)-C(73) 118.6(12)
C(44)-C(47)-C(43) 118.1(13)
C(53)-C(48)-C(14) 118.0(13)
N(19)-C(49)-N(18) 125.5(12)
N(19)-C(49)-C(84) 122.3(12)
N(18)-C(49)-C(84) 111.7(12)
C(51)-C(50)-C(5) 124.4(14)
C(51)-C(50)-C(25) 119.1(13)
C(5)-C(50)-C(25) 116.5(12)
C(50)-C(51)-C(54) 118.6(15)
C(77)-C(52)-C(4) 116.2(11)
C(15)-C(53)-C(48) 117.5(13)
C(51)-C(54)-C(55) 122.7(15)
N(7)-C(55)-C(54) 114.8(13)
N(8)-C(56)-C(19) 121.4(10)
C(81)-C(57)-N(20) 115.5(15)
C(80)-C(58)-C(29) 118.0(16)
C(102)-C(59)-C(30) 116.0(12)
C(71)-C(60)-C(36) 120.4(15)
C(71)-C(60)-C(27) 117.9(14)
C(36)-C(60)-C(27) 121.7(14)
C(72)-C(61)-C(66) 120.3(16)
N(32)-C(62)-N(18) 129.6(14)
N(32)-C(62)-C(81) 115.7(14)
N(18)-C(62)-C(81) 114.7(14)
C(76)-C(63)-C(71) 121.0(17)
C(72)-C(64)-C(45) 118.8(15)
N(2)-C(65)-N(10) 127.7(11)
N(2)-C(65)-C(19) 118.8(11)
N(10)-C(65)-C(19) 113.4(10)
C(39)-C(66)-C(61) 118.5(14)
C(23)-C(67)-C(26) 119.7(12)
N(30)-C(68)-N(13) 124.8(12)
N(30)-C(68)-C(40) 117.6(11)
N(13)-C(68)-C(40) 117.5(11)
C(7)-C(69)-C(38) 116.0(13)
N(15)-C(70)-C(82) 121.4(16)
C(60)-C(71)-C(63) 122.8(16)
C(61)-C(72)-C(64) 121.8(16)
C(42)-C(73)-C(46) 116.7(13)
C(40)-C(74)-N(12) 121.2(12)
C(76)-C(75)-C(27) 121.7(14)
C(63)-C(76)-C(75) 121.6(16)
C(52)-C(77)-C(41) 121.9(12)
N(20)-C(78)-C(83) 116(2)
C(81)-C(79)-C(83) 116(2)
C(58)-C(80)-C(40) 114.2(15)
C(79)-C(81)-C(57) 126.0(17)
C(79)-C(81)-C(62) 117.8(16)
C(57)-C(81)-C(62) 116.1(15)
C(70)-C(82)-C(20) 116.4(15)
C(79)-C(83)-C(78) 123(2)
C(85)-C(84)-C(88) 118.4(12)
C(85)-C(84)-C(49) 118.7(11)
C(88)-C(84)-C(49) 122.9(12)
N(22)-C(85)-C(84) 122.7(11)
C(102)-C(86)-N(3) 126.6(13)
N(22)-C(87)-C(95) 121.2(14)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(22)-C(87)-C(036)</td>
<td>61(2)</td>
</tr>
<tr>
<td>C(95)-C(87)-C(036)</td>
<td>177(3)</td>
</tr>
<tr>
<td>C(95)-C(88)-C(84)</td>
<td>118.6(13)</td>
</tr>
<tr>
<td>C(90)-C(89)-C(94)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(89)-C(90)-C(91)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(90)-C(91)-C(92)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(93)-C(92)-C(91)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(94)-C(93)-C(92)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(93)-C(94)-C(89)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(93)-C(94)-C(45)</td>
<td>118.7(18)</td>
</tr>
<tr>
<td>C(89)-C(94)-C(45)</td>
<td>121.3(18)</td>
</tr>
<tr>
<td>C(88)-C(95)-C(87)</td>
<td>116.4(14)</td>
</tr>
<tr>
<td>C(97)-C(96)-C(101)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(96)-C(97)-C(98)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(99)-C(98)-C(97)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(100)-C(99)-C(98)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(99)-C(100)-C(101)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(99)-C(100)-C(39)</td>
<td>119.2(13)</td>
</tr>
<tr>
<td>C(101)-C(100)-C(39)</td>
<td>120.6(13)</td>
</tr>
<tr>
<td>C(100)-C(101)-C(96)</td>
<td>120.0</td>
</tr>
<tr>
<td>C(86)-C(102)-C(59)</td>
<td>118.7(13)</td>
</tr>
<tr>
<td>N(23)-C(103)-C(104)</td>
<td>112.3(15)</td>
</tr>
<tr>
<td>N(27)-C(104)-C(103)</td>
<td>116.4(16)</td>
</tr>
<tr>
<td>N(33)-C(105)-C(110)</td>
<td>110(2)</td>
</tr>
<tr>
<td>C(111)-C(106)-N(24)</td>
<td>114(2)</td>
</tr>
<tr>
<td>C(112)-C(107)-N(26)</td>
<td>110.9(19)</td>
</tr>
<tr>
<td>C(109)-C(108)-N(28)</td>
<td>118(2)</td>
</tr>
<tr>
<td>C(108)-C(109)-N(25)</td>
<td>119(2)</td>
</tr>
<tr>
<td>N(29)-C(110)-C(105)</td>
<td>116(2)</td>
</tr>
<tr>
<td>N(34)-C(111)-C(106)</td>
<td>120(2)</td>
</tr>
<tr>
<td>C(107)-C(112)-N(31)</td>
<td>118.2(19)</td>
</tr>
<tr>
<td>C(124)-C(113)-N(36)</td>
<td>111(3)</td>
</tr>
<tr>
<td>C(123)-C(114)-C(122)</td>
<td>93(3)</td>
</tr>
<tr>
<td>C(123)-C(114)-C(116)</td>
<td>49(2)</td>
</tr>
<tr>
<td>C(122)-C(114)-C(116)</td>
<td>134(2)</td>
</tr>
<tr>
<td>C(123)-C(114)-C(121)</td>
<td>116(3)</td>
</tr>
<tr>
<td>C(122)-C(114)-C(121)</td>
<td>68.9(19)</td>
</tr>
<tr>
<td>C(116)-C(114)-C(121)</td>
<td>102.1(17)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>C(122)-C(120)-C(119)</td>
<td>91(2)</td>
</tr>
<tr>
<td>C(115)-C(120)-C(119)</td>
<td>39.4(11)</td>
</tr>
<tr>
<td>C(118)-C(120)-C(119)</td>
<td>91.3(19)</td>
</tr>
<tr>
<td>C(122)-C(120)-C(121)</td>
<td>55.6(18)</td>
</tr>
<tr>
<td>C(115)-C(120)-C(121)</td>
<td>84.2(18)</td>
</tr>
<tr>
<td>C(118)-C(120)-C(121)</td>
<td>44.3(14)</td>
</tr>
<tr>
<td>C(119)-C(120)-C(121)</td>
<td>93.3(18)</td>
</tr>
<tr>
<td>C(118)-C(121)-C(114)</td>
<td>123(2)</td>
</tr>
<tr>
<td>C(118)-C(121)-C(122)</td>
<td>106(2)</td>
</tr>
<tr>
<td>C(114)-C(121)-C(122)</td>
<td>44.9(14)</td>
</tr>
<tr>
<td>C(118)-C(121)-C(120)</td>
<td>57.2(18)</td>
</tr>
<tr>
<td>C(114)-C(121)-C(120)</td>
<td>80.5(17)</td>
</tr>
<tr>
<td>C(122)-C(121)-C(120)</td>
<td>49.2(16)</td>
</tr>
<tr>
<td>C(114)-C(122)-C(120)</td>
<td>113(3)</td>
</tr>
<tr>
<td>C(114)-C(122)-C(121)</td>
<td>66(2)</td>
</tr>
<tr>
<td>C(120)-C(122)-C(121)</td>
<td>75(2)</td>
</tr>
<tr>
<td>C(114)-C(122)-C(123)</td>
<td>42.0(17)</td>
</tr>
<tr>
<td>C(120)-C(122)-C(123)</td>
<td>87(2)</td>
</tr>
<tr>
<td>C(121)-C(122)-C(123)</td>
<td>89(2)</td>
</tr>
<tr>
<td>C(116)-C(123)-C(114)</td>
<td>79(3)</td>
</tr>
<tr>
<td>C(116)-C(123)-C(119)</td>
<td>97(3)</td>
</tr>
<tr>
<td>C(114)-C(123)-C(119)</td>
<td>127(3)</td>
</tr>
<tr>
<td>C(116)-C(123)-C(117)</td>
<td>52(2)</td>
</tr>
<tr>
<td>C(114)-C(123)-C(117)</td>
<td>105(3)</td>
</tr>
<tr>
<td>C(119)-C(123)-C(117)</td>
<td>45.9(16)</td>
</tr>
<tr>
<td>C(116)-C(123)-C(122)</td>
<td>118(4)</td>
</tr>
<tr>
<td>C(114)-C(123)-C(122)</td>
<td>45.2(19)</td>
</tr>
<tr>
<td>C(119)-C(123)-C(122)</td>
<td>98(3)</td>
</tr>
<tr>
<td>C(117)-C(123)-C(122)</td>
<td>111(2)</td>
</tr>
<tr>
<td>C(113)-C(124)-N(35)</td>
<td>111(3)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+2,-z+1
Table 4. Anisotropic displacement parameters (Å² x 10^3) for yu1. The anisotropic displacement factor exponent takes the form: -2π²[a²U₁₁ + ... + 2hkab U₁₂]

<table>
<thead>
<tr>
<th></th>
<th>U₁₁</th>
<th>U₂₂</th>
<th>U₃₃</th>
<th>U₁₂</th>
<th>U₁₃</th>
<th>U₁₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)</td>
<td>91(1)</td>
<td>102(1)</td>
<td>90(1)</td>
<td>-8(1)</td>
<td>-44(1)</td>
<td>-12(1)</td>
</tr>
<tr>
<td>Pd(2)</td>
<td>99(1)</td>
<td>119(1)</td>
<td>80(1)</td>
<td>10(1)</td>
<td>-24(1)</td>
<td>-18(1)</td>
</tr>
<tr>
<td>Pd(3)</td>
<td>123(1)</td>
<td>106(1)</td>
<td>106(1)</td>
<td>-20(1)</td>
<td>-36(1)</td>
<td>-4(1)</td>
</tr>
<tr>
<td>Pd(4)</td>
<td>128(1)</td>
<td>111(1)</td>
<td>150(1)</td>
<td>-28(1)</td>
<td>-86(1)</td>
<td>-11(1)</td>
</tr>
<tr>
<td>Pd(5)</td>
<td>123(1)</td>
<td>80(1)</td>
<td>132(1)</td>
<td>7(1)</td>
<td>-42(1)</td>
<td>-31(1)</td>
</tr>
<tr>
<td>Pd(6)</td>
<td>134(1)</td>
<td>145(1)</td>
<td>154(1)</td>
<td>-39(1)</td>
<td>-70(1)</td>
<td>13(1)</td>
</tr>
</tbody>
</table>

The anisotropic refinements were failed for the other atoms, possibly due to the data collected at room temperature, not low temperature.
Spectroscopic data and Elemental Analysis of (1)*2 complex:
1H NMR (500 MHz, D$_2$O, 50 mM, 60°C) δ = 10.30 (br, 8 H, PyHa), 9.62 (br, 4 H, PyHa'), 9.21 (br, 8 H, PyHb), 9.10 (br, 4 H, PyHb'), 8.81 (br, 12 H, PyHd+d'), 7.78 (br, 12 H, PyHc+c'), 6.09 (br, 4H, m-Terphenyl, Δδ = -1.2), 5.89 (br, 8 H, m-Terphenyl, Δδ = -1.6), 5.45 (br, 8 H, m-Terphenyl, Δδ = -2.2), 5.39 (br d, 4 H, m-Terphenyl, Δδ = -2.2), 5.26 (br s, 2 H, m-Terphenyl, Δδ = -2.5), 5.20 (br d, 2 H, m-Terphenyl, Δδ = -2.3), 2.92 (m, 24 H, NCH$_2$CH$_2$N). Anal. Calcd for C$_{120}$H$_{124}$N$_{48}$O$_{36}$Pd$_6$ •16H$_2$O: C, 38.52; H, 4.20; N, 17.97. Found: C, 38.40; H, 3.77; N, 18.12.

Spectroscopic data and Elemental Analysis of 1*3 complex:
1H NMR (500 MHz, D$_2$O, 50 mM, 60°C) δ = 10.29 (s, 8 H, PyHa), 9.38 (s, 4 H, PyHa'), 9.23 (d, 8 H, J = 5.80 Hz, PyHb), 9.14 (d, 4 H, J = 5.5 Hz, PyHb'), 8.94 (d, 4 H, J = 7.35 Hz, PyHd'), 8.77 (d, 8 H, J = 7.9 Hz, PyHd), 7.91 (t, 4 H, J = 6.85 Hz, PyHc'), 7.85 (t, 8 H, J = 6.85 Hz, PyHc), 5.63 (br, 2 H, o-Terphenyl, Δδ = -1.8), 5.32 (br, 2 H, o-Terphenyl, Δδ = -2.1), 5.19 (br, 2 H, o-Terphenyl, Δδ = -2.0), 5.04 (br d, 4 H, o-Terphenyl, Δδ = -2.2), 4.80 (d, 4 H, J = 7.3 Hz, o-Terphenyl, Δδ = -2.3), 2.94 (m, 24 H, NCH$_2$CH$_2$N). Anal. Calcd for C$_{120}$H$_{124}$N$_{48}$O$_{36}$Pd$_6$ •16H$_2$O: C, 38.52; H, 4.20; N, 17.97. Found: C, 38.28; H, 3.69; N, 17.95.

Spectroscopic data and Elemental Analysis of (1)*5 complex (n = 1-3 depending on the concentrations):
1H NMR (500 MHz, D$_2$O, 100 mM, 60°C) δ = 10.27 (br, 8 H, PyHa), 9.38 (s, 4 H, PyHa'), 9.21 (br, 8 H, PyHb), 9.15 (br, 4 H, PyHb'), 8.94 (br, 4 H, PyHd'), 8.69 (br, 8 H, PyHd), 7.98 (br, 4 H, PyHc'), 7.83 (br, 8 H, PyHc), 6.6-5.9 (br m, one cis-Stilbene), 5.37, 5.30, 5.04, 4.48 (br q, two cis-Stilbene, Δδ = -1.8, -1.9, -2.2, -2.1,
resp.), 2.90 (br, 24 H, NCH₂CH₂N). 1•(5)₂ complex: ¹H NMR (500 MHz, D₂O, saturated solution (ca. 40 mM), 60°C) δ = 10.28 (s, 8 H, PyHa), 9.41 (s, 4 H, PyHa'), 9.23 (d, 8 H, J = 5.35 Hz, PyHb), 9.16 (d, 4 H, J = 5.35 Hz, PyHb'), 8.94 (d, 4 H, J = 8.05 Hz, PyHd'), 8.72 (d, 8 H, J = 7.80 Hz, PyHd), 7.97 (t, 4 H, J = 7.60, 5.85 Hz, PyHc'), 7.84 (t, 8 H, J = 7.55, 6.10 Hz, PyHc), 5.38 (br d, 4 H, J = 7.3 Hz, cis-Stilbene, Δδ = -1.8), 5.29 (t, 8 H, J = 7.3 Hz, cis-Stilbene, Δδ = -1.9), 5.05 (d, 8 H, J = 7.55 Hz, cis-Stilbene, Δδ = -2.2), 4.49 (s, 4 H, cis-Stilbene, Δδ = -2.1), 2.92–2.83 (br m, 24 H, NCH₂CH₂N). Anal. Calcd for C₁₁₂H₁₂₀N₄₈O₃₆Pd₆ •12H₂O: C, 37.69; H, 4.07; N, 18.84. Found: C, 37.77; H, 3.66; N, 18.89. 1•(5) complex: ¹H NMR (500 MHz, D₂O, 20 mM, 60°C) δ = 10.26 (s, 8 H, PyHa), 9.33 (s, 4 H, PyHa'), 9.21 (d, 8 H, J = 5.2 Hz, PyHb), 9.13 (br, 4 H, PyHb'), 8.99 (d, 4 H, J = 8.25 Hz, PyHd'), 8.68 (d, 8 H, J = 7.6 Hz, PyHd), 7.99 (br, 4 H, PyHc'), 7.84 (t, 8 H, J = 7.35, 6.10 Hz, PyHc), 5.33 (br, 2 H, cis-Stilbene, Δδ = -1.9), 5.24 (br, 4 H, cis-Stilbene, Δδ = -2.0), 5.01 (d, 4 H, J = 7.3 Hz, cis-Stilbene, Δδ = -2.2), 4.40 (s, 2H, cis-Stilbene, Δδ = -2.2), 2.90 (m, 24 H, NCH₂CH₂N).
N(31C)-Pd(4)-N(31D) 90.1(5)
N(31C)-Pd(4)-N(1D) 91.8(8)
N(31D)-Pd(4)-N(1D) 177.2(9)
N(31C)-Pd(4)-N(2D) 174.9(7)
N(31D)-Pd(4)-N(2D) 93.6(6)
N(1D)-Pd(4)-N(2D) 84.4(9)
N(21D)-Pd(5)-N(31A) 92.2(5)
N(21D)-Pd(5)-N(2E) 176.8(8)
N(31A)-Pd(5)-N(2E) 90.8(7)
N(21D)-Pd(5)-N(1E) 95.4(9)
N(31A)-Pd(5)-N(1E) 172.2(9)
N(2E)-Pd(5)-N(1E) 81.6(11)
N(1F)-Pd(6)-N(41A) 173.8(9)
N(1F)-Pd(6)-N(2F) 83.1(11)
N(41A)-Pd(6)-N(2F) 91.8(9)
N(1F)-Pd(6)-N(41D) 94.1(8)
N(41A)-Pd(6)-N(41D) 91.0(5)
N(2F)-Pd(6)-N(41D) 177.0(10)
C(12A)-N(11A)-C(11A) 115.1(12)
C(12A)-N(12A)-C(13A) 114.9(12)
C(13A)-N(13A)-C(11A) 114.2(11)
N(11A)-C(11A)-N(13A) 125.6(12)
N(11A)-C(11A)-C(31A) 117.8(12)
N(13A)-C(11A)-C(31A) 116.3(12)
N(11A)-C(12A)-N(12A) 125.4(12)
N(11A)-C(12A)-C(41A) 116.2(12)
N(12A)-C(12A)-C(41A) 118.4(13)
N(13A)-C(13A)-N(12A) 124.5(12)
N(13A)-C(13A)-C(21A) 119.0(11)
N(12A)-C(13A)-C(21A) 116.5(12)
C(22A)-N(21A)-C(23A) 117.3(12)
C(22A)-N(21A)-Pd(1) 121.1(10)
C(23A)-N(21A)-Pd(1) 121.4(9)
C(25A)-C(21A)-C(22A) 119.8(13)
C(25A)-C(21A)-C(13A) 122.7(12)
C(22A)-C(21A)-C(13A) 117.5(12)
N(21A)-C(22A)-C(21A) 124.4(13)
N(21A)-C(23A)-C(24A) 121.9(14)
C(22B)-C(21B)-C(11B) 121.3(12)
C(25B)-C(21B)-C(11B) 118.9(12)
C(21B)-C(22B)-N(21B) 121.2(13)
N(21B)-C(23B)-C(24B) 123.8(15)
C(23B)-C(24B)-C(25B) 118.2(16)
C(21B)-C(25B)-C(24B) 117.2(14)
C(33B)-N(31B)-C(32B) 112.9(11)
C(33B)-N(31B)-Pd(2) 126.1(10)
C(32B)-N(31B)-Pd(2) 121.0(9)
C(35B)-C(31B)-C(32B) 116.2(14)
C(35B)-C(31B)-C(12B) 121.5(11)
C(32B)-C(31B)-C(12B) 122.2(12)
N(31B)-C(32B)-C(31B) 126.4(12)
C(34B)-C(33B)-N(31B) 125.6(14)
C(33B)-C(34B)-C(35B) 123.2(14)
C(34B)-C(35B)-C(31B) 115.7(13)
C(43B)-N(41B)-C(42B) 117.8(13)
C(43B)-N(41B)-Pd(1) 120.2(10)
C(42B)-N(41B)-Pd(1) 122.0(11)
C(42B)-C(41B)-C(45B) 116.3(13)
C(42B)-C(41B)-C(13B) 123.2(13)
C(45B)-C(41B)-C(13B) 120.4(13)
N(41B)-C(42B)-C(41B) 125.2(14)
N(41B)-C(43B)-C(44B) 121.3(16)
C(45B)-C(44B)-C(43B) 120.3(16)
C(44B)-C(45B)-C(41B) 118.9(15)
C(13C)-N(11C)-C(11C) 117.7(12)
C(12C)-N(12C)-C(13C) 114.2(12)
C(12C)-N(13C)-C(11C) 115.1(11)
N(11C)-C(11C)-N(13C) 124.2(12)
N(11C)-C(11C)-C(21C) 116.9(11)
N(13C)-C(11C)-C(21C) 118.9(11)
N(12C)-C(12C)-N(13C) 125.2(12)
N(12C)-C(12C)-C(31C) 118.3(13)
N(13C)-C(12C)-C(31C) 116.4(13)
N(11C)-C(13C)-N(12C) 123.4(14)
N(11C)-C(13C)-C(41C) 121.5(12)
N(12C)-C(13C)-C(41C) 115.1(12)
<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond Angle</th>
<th>Number of Significant Digits</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(22C)-N(21C)-C(23C)</td>
<td>119.7(13)</td>
<td></td>
</tr>
<tr>
<td>C(22C)-N(21C)-Pd(3)</td>
<td>123.0(10)</td>
<td></td>
</tr>
<tr>
<td>C(23C)-N(21C)-Pd(3)</td>
<td>117.1(10)</td>
<td></td>
</tr>
<tr>
<td>C(22C)-C(21C)-C(25C)</td>
<td>116.2(13)</td>
<td></td>
</tr>
<tr>
<td>C(22C)-C(21C)-C(11C)</td>
<td>120.7(12)</td>
<td></td>
</tr>
<tr>
<td>C(25C)-C(21C)-C(11C)</td>
<td>123.1(12)</td>
<td></td>
</tr>
<tr>
<td>N(21C)-C(22C)-C(21C)</td>
<td>124.1(13)</td>
<td></td>
</tr>
<tr>
<td>N(21C)-C(23C)-C(24C)</td>
<td>117.6(15)</td>
<td></td>
</tr>
<tr>
<td>C(25C)-C(24C)-C(23C)</td>
<td>116.0(16)</td>
<td></td>
</tr>
<tr>
<td>C(24C)-C(25C)-C(21C)</td>
<td>126.3(15)</td>
<td></td>
</tr>
<tr>
<td>C(33C)-N(31C)-C(32C)</td>
<td>113.7(15)</td>
<td></td>
</tr>
<tr>
<td>C(33C)-N(31C)-Pd(4)</td>
<td>123.8(10)</td>
<td></td>
</tr>
<tr>
<td>C(32C)-N(31C)-Pd(4)</td>
<td>122.5(11)</td>
<td></td>
</tr>
<tr>
<td>C(35C)-C(31C)-C(32C)</td>
<td>119.9(13)</td>
<td></td>
</tr>
<tr>
<td>C(35C)-C(31C)-C(12C)</td>
<td>122.1(15)</td>
<td></td>
</tr>
<tr>
<td>C(32C)-C(31C)-C(12C)</td>
<td>118.0(13)</td>
<td></td>
</tr>
<tr>
<td>N(31C)-C(32C)-C(31C)</td>
<td>123.9(14)</td>
<td></td>
</tr>
<tr>
<td>N(31C)-C(33C)-C(34C)</td>
<td>127.2(15)</td>
<td></td>
</tr>
<tr>
<td>C(35C)-C(34C)-C(33C)</td>
<td>115.1(15)</td>
<td></td>
</tr>
<tr>
<td>C(31C)-C(35C)-C(34C)</td>
<td>120.1(15)</td>
<td></td>
</tr>
<tr>
<td>C(43C)-N(41C)-C(42C)</td>
<td>117.9(12)</td>
<td></td>
</tr>
<tr>
<td>C(43C)-N(41C)-Pd(2)</td>
<td>123.3(10)</td>
<td></td>
</tr>
<tr>
<td>C(42C)-N(41C)-Pd(2)</td>
<td>118.7(8)</td>
<td></td>
</tr>
<tr>
<td>C(45C)-C(41C)-C(42C)</td>
<td>118.5(14)</td>
<td></td>
</tr>
<tr>
<td>C(45C)-C(41C)-C(13C)</td>
<td>124.7(13)</td>
<td></td>
</tr>
<tr>
<td>C(42C)-C(41C)-C(13C)</td>
<td>116.8(12)</td>
<td></td>
</tr>
<tr>
<td>N(41C)-C(42C)-C(41C)</td>
<td>121.2(12)</td>
<td></td>
</tr>
<tr>
<td>N(41C)-C(43C)-C(44C)</td>
<td>127.3(16)</td>
<td></td>
</tr>
<tr>
<td>C(43C)-C(44C)-C(45C)</td>
<td>112.0(15)</td>
<td></td>
</tr>
<tr>
<td>C(41C)-C(45C)-C(44C)</td>
<td>123.0(15)</td>
<td></td>
</tr>
<tr>
<td>C(11D)-N(11D)-C(12D)</td>
<td>113.1(13)</td>
<td></td>
</tr>
<tr>
<td>C(12D)-N(12D)-C(13D)</td>
<td>114.1(13)</td>
<td></td>
</tr>
<tr>
<td>C(13D)-N(13D)-C(11D)</td>
<td>114.4(13)</td>
<td></td>
</tr>
<tr>
<td>N(11D)-C(11D)-N(13D)</td>
<td>127.5(15)</td>
<td></td>
</tr>
<tr>
<td>N(11D)-C(11D)-C(21D)</td>
<td>115.4(14)</td>
<td></td>
</tr>
<tr>
<td>N(13D)-C(11D)-C(21D)</td>
<td>117.0(14)</td>
<td></td>
</tr>
<tr>
<td>N(12D)-C(12D)-N(11D)</td>
<td>124.5(14)</td>
<td></td>
</tr>
<tr>
<td>N(12D)-C(12D)-C(31D)</td>
<td>120.8(14)</td>
<td></td>
</tr>
</tbody>
</table>
N(11D)-C(12D)-C(31D) 114.7(13)
N(13D)-C(13D)-N(12D) 126.1(14)
N(13D)-C(13D)-C(41D) 118.5(14)
N(12D)-C(13D)-C(41D) 115.2(14)
C(23D)-N(21D)-C(22D) 118.0(15)
C(23D)-N(21D)-Pd(5) 120.1(11)
C(22D)-N(21D)-Pd(5) 121.6(11)
C(22D)-C(21D)-C(25D) 118.9(16)
C(22D)-C(21D)-C(11D) 121.0(16)
C(25D)-C(21D)-C(11D) 119.8(14)
N(21D)-C(22D)-C(21D) 122.5(16)
N(21D)-C(23D)-C(24D) 121.3(16)
C(25D)-C(24D)-C(23D) 118.5(19)
C(24D)-C(25D)-C(21D) 120.4(18)
C(33D)-N(31D)-C(32D) 119.6(14)
C(33D)-N(31D)-Pd(4) 120.6(11)
C(32D)-N(31D)-Pd(4) 119.2(11)
C(32D)-C(31D)-C(35D) 116.8(15)
C(32D)-C(31D)-C(12D) 122.0(13)
C(35D)-C(31D)-C(12D) 121.2(15)
N(31D)-C(32D)-C(31D) 123.2(14)
N(31D)-C(33D)-C(34D) 121.5(16)
C(33D)-C(34D)-C(35D) 117.9(17)
C(31D)-C(35D)-C(34D) 120.6(17)
C(43D)-N(41D)-C(42D) 115.3(16)
C(43D)-N(41D)-Pd(6) 121.6(12)
C(42D)-N(41D)-Pd(6) 123.0(11)
C(45D)-C(41D)-C(42D) 120.9(15)
C(45D)-C(41D)-C(13D) 120.8(16)
C(42D)-C(41D)-C(13D) 118.2(15)
N(41D)-C(42D)-C(41D) 122.6(15)
N(41D)-C(43D)-C(44D) 126.0(17)
C(43D)-C(44D)-C(45D) 118.3(17)
C(41D)-C(45D)-C(44D) 116.4(17)
C(1A)-N(1A)-Pd(1) 105.8(10)
C(2A)-N(2A)-Pd(1) 110.9(11)
C(2A)-C(1A)-N(1A) 110.5(17)
C(1A)-C(2A)-N(2A) 106.3(17)
C(1B)-N(1B)-Pd(2) 107.7(14)
C(2B)-N(2B)-Pd(2) 108.7(13)
N(1B)-C(1B)-C(2B) 117(2)
C(1B)-C(2B)-N(2B) 112.8(16)
C(1C)-N(1C)-Pd(3) 107.1(14)
C(2C)-N(2C)-Pd(3) 107.3(13)
C(2C)-C(1C)-N(1C) 116(2)
C(1C)-C(2C)-N(2C) 116(2)
C(1D)-N(1D)-Pd(4) 108.9(17)
C(2D)-N(2D)-Pd(4) 107.6(17)
C(2D)-C(1D)-N(1D) 106(2)
N(2D)-C(2D)-C(1D) 109(3)
C(1E)-N(1E)-Pd(5) 105.0(18)
C(2E)-N(2E)-Pd(5) 106.9(19)
C(2E)-C(1E)-N(1E) 117.2(11)
C(1E)-C(2E)-N(2E) 124(3)
C(1F)-N(1F)-Pd(6) 115(3)
C(2F)-N(2F)-Pd(6) 107(3)
N(1F)-C(1F)-C(2F) 111(5)
N(2F)-C(2F)-C(1F) 110(4)
O(101)-N(100)-O(103) 115(3)
O(101)-N(100)-O(102) 127(3)
O(103)-N(100)-O(102) 118(2)
C(106)-C(101)-C(102) 124(2)
C(106)-C(101)-C(107) 119.8(18)
C(102)-C(101)-C(107) 116(2)
C(103)-C(102)-C(101) 116(3)
C(102)-C(103)-C(104) 119(2)
C(105)-C(104)-C(103) 115(2)
C(106)-C(105)-C(104) 132(2)
C(105)-C(106)-C(101) 113(2)
C(108)-C(107)-C(101) 133(2)
C(107)-C(108)-C(109) 128(2)
C(114)-C(109)-C(110) 121(2)
C(114)-C(109)-C(108) 125.9(19)
C(110)-C(109)-C(108) 113(2)
C(109)-C(110)-C(111) 115(2)
C(112)-C(111)-C(110) 119(2)
C(113)-C(112)-C(111) 123(2)
C(112)-C(113)-C(114) 119(2)
C(109)-C(114)-C(113) 122(2)
C(202)-C(201)-C(206) 121(2)
C(202)-C(201)-C(207) 121.8(19)
C(206)-C(201)-C(207) 116.9(18)
C(201)-C(202)-C(203) 116(2)
C(204)-C(203)-C(202) 124(2)
C(203)-C(204)-C(205) 118(2)
C(206)-C(205)-C(204) 117(2)
C(205)-C(206)-C(201) 124(2)
C(208)-C(207)-C(201) 126(2)
C(207)-C(208)-C(209) 135(2)
C(214)-C(209)-C(210) 117.3(19)
C(214)-C(209)-C(208) 123(2)
C(210)-C(209)-C(208) 119.3(19)
C(209)-C(210)-C(211) 119(2)
C(210)-C(211)-C(212) 118(2)
C(213)-C(212)-C(211) 117(2)
C(212)-C(213)-C(214) 123(2)
C(209)-C(214)-C(213) 126(2)
C(306)-C(301)-C(302) 133(3)
C(306)-C(301)-C(307) 115(2)
C(302)-C(301)-C(307) 111(2)
C(303)-C(302)-C(301) 102(3)
C(304)-C(303)-C(302) 131(4)
C(303)-C(304)-C(305) 118(4)
C(304)-C(305)-C(306) 118(3)
C(301)-C(306)-C(305) 114(2)
C(308)-C(307)-C(301) 128(2)
C(307)-C(308)-C(309) 126(3)
C(310)-C(309)-C(314) 124(2)
C(310)-C(309)-C(308) 126(2)
C(314)-C(309)-C(308) 109(2)
C(309)-C(310)-C(311) 117(2)
C(312)-C(311)-C(310) 124(2)
C(311)-C(312)-C(313) 118(2)
C(314)-C(313)-C(312) 120(2)
C(313)-C(314)-C(309) 117(2)
O(202)-N(200)-O(203) 135(4)
O(202)-N(200)-O(201) 97.8(19)
O(203)-N(200)-O(201) 126(4)
C(426)-C(402)-C(437) 149(6)
C(426)-C(402)-C(425) 85(4)
C(437)-C(402)-C(425) 71(3)
C(438)-C(408)-C(409) 99(5)
C(408)-C(409)-C(438) 38(3)
C(416)-C(410)-C(434) 25.8(19)
C(427)-C(411)-C(428) 85(6)
C(427)-C(411)-C(433) 68(4)
C(428)-C(411)-C(433) 150(7)
C(427)-C(411)-C(449) 11(3)
C(428)-C(411)-C(449) 78(4)
C(433)-C(411)-C(449) 77(3)
C(434)-C(415)-C(436) 128(3)
C(434)-C(416)-C(410) 83(9)
C(443)-C(417)-C(418) 50(2)
C(443)-C(418)-C(417) 69(3)
C(422)-C(420)-C(421) 82(3)
C(422)-C(420)-C(444) 29(3)
C(421)-C(420)-C(444) 110(3)
C(440)-C(421)-C(420) 124(3)
C(440)-C(421)-C(435) 149(4)
C(420)-C(421)-C(435) 82(4)
C(440)-C(421)-C(422) 164(4)
C(420)-C(421)-C(422) 39(3)
C(435)-C(421)-C(422) 44.3(19)
C(444)-C(422)-C(420) 110(5)
C(444)-C(422)-C(435) 130(5)
C(420)-C(422)-C(435) 119(5)
C(444)-C(422)-C(421) 164(5)
C(420)-C(422)-C(421) 58(4)
C(435)-C(422)-C(421) 63(2)
C(437)-C(425)-C(402) 38.7(15)
C(437)-C(425)-C(426) 67(2)
C(402)-C(425)-C(426) 29.6(15)