

Supplementary Material for:

Lithiated 4-Isopropyl-3-methylthiomethyl-5,5-diphenyl-oxazolidin-2-one: a Chiral Formyl Anion Equivalent for Enantioselective Preparations of 1,2-Diols, 2-Amino Alcohols, 2-Hydroxy Esters and 4-Hydroxy-2-alkenoates

*Christoph Gaul, Kaspar Schärer, and Dieter Seebach**

Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich, Switzerland

seebach@org.chem.ethz.ch

1. Abbreviations

aq.	Aqueous	<i>J</i>	Coupling constant
arom.	Aromatic	LDA	Lithium diisopropylamide
b.p.	Boiling point	M	Molecule peak (MS)
BuLi	Butyllithium	min	Minute(s)
d	Day(s)	MOMCl	Chloromethyl methyl ether
conc.	Concentrated	M.p.	Melting point
DBU	(1,8-Diazabicyclo[5.4.0]undec-7-en	MS	Mass spectrometry
DIPA	Diisopropylamine	MTMCl	Chloromethyl methyl sulfide
DME	1,2-Dimethoxyethane	M	Molar
dr	Diastereomer ratio	NMR	Nuclear Magnetic Resonance Spectroscopy
dist.	Distillation	org.	Organic
DMAP	4-(Dimethylamino)pyridine	Pd/C	Palladium on charcoal
DMF	Dimethylformamide	<i>rac</i>	Racemic
DMPU	1,3-Dimethyl-3,4,5,6-tetrahydropyrimidin-2(1 <i>H</i>)-one	<i>R</i> _t	Retention time
eq.	Equivalent(s)	r.t.	Room temperature
er	Enantiomer ratio	sat.	Saturated
FC	Flash-chromatography	soln.	Solution
GC	Gas-chromatography	solv.	Solvent
GP	General Procedure	temp.	Temperature
h	Hour(s)	TFA	Trifluoroacetic acid
HPLC	High Performance Liquid Chromatography	THF	Tetrahydrofuran
h.v.	High vacuum (0.01-0.1 Torr)	TLC	Thin layer chromatography
IR	Infrared spectroscopy		

2 Materials and Methods

Solvents: THF was freshly distilled over potassium under argon before use. Et₂O was freshly distilled over sodium under argon. CH₂Cl₂ and DMSO were distilled over CaH₂ and stored under argon over 4 Å molecular sieves. DME was stored over KOH pellets. Solvents for chromatography and workup procedures were distilled from Sikkon (pentane, AcOEt, MeOH), P₂O₅ (CH₂Cl₂) and KOH/FeSO₄ (Et₂O).

Reagents and methods: (iPr)₂NEt, DMPU and DBU were distilled from CaH₂ and stored under argon over 4 Å molecular sieves. All liquid aldehydes and ketones were distilled and stored under argon. BuLi (ca. 1.6M soln. in hexane) was titrated before use according to the method of *J. Suffert* [1]. LiBr was dried in Kugelrohr apparatus (Büchi GKR-50) at 150° under h.v. for 16 h. All other reagents were used as received from *Aldrich* or *Fluka*.

Reactions involving air- or moisture-sensitive reagents or intermediates were performed under Ar in glassware which had been oven- or heat-gun dried under h.v.

Thin-layer chromatography: *Merck* silica gel 60 *F*₂₅₄ or *Macherey-Nagel* Durasil-25 UV₂₅₄ plates; detection by UV and by dipping into a soln. of anisaldehyde (9.2 mL anisaldehyde, 3.75 mL HOAc, 12.5 mL conc. H₂SO₄, 350 mL EtOH), ninhydrine (0.6 g ninhydrine, 2 mL HOAc, 13 mL H₂O, 285 mL butanol), "Mo-stain" (25 g phosphomolybdic acid, 10 g, Ce(SO₄)₂·H₂O, 60 mL conc. H₂SO₄ and 940 mL H₂O) or KMnO₄ soln. (12 g NaOH, 1.5 g KMnO₄, 300 mL H₂O), followed by heating with a heat-gun.

Flash chromatography: *Fluka* silica gel 60 (40-63 μm) at r.t. with a pressure of *ca.* 0.2 bar. Eluents are indicated.

Melting points were measured in open end glass capillary tubes on a *Büchi 510* apparatus and are uncorrected.

IR Spectra: Measured as film, 1% CHCl_3 -soln. on a *Perkin-Elmer-782* spectrophotometer. The maxima are classified in three intensities: *s* (strong), *m* (medium) and *w* (weak) and are reported in cm^{-1} .

NMR Spectra: ^1H -NMR spectra were recorded on a *Bruker AMX 500* (500 MHz), *AMX 400* (400 MHz), *ARX 300* (300 MHz), *Varian Gemini 300* (300 MHz), or *Varian Gemini 200* (200 MHz). ^{13}C -NMR spectra were recorded on a *Bruker AMX 500* (125 MHz), *AMX 400* (100 MHz), *Varian Gemini 300* (75 MHz) or *Varian Gemini 200* (50 MHz). All ^{13}C -NMR spectra are ^1H -broadband decoupled. ^{19}F -NMR spectra were recorded on a *Varian Gemini 300* (282 MHz). ^{31}P -NMR spectra were recorded on a *Bruker AMX 400* (162 MHz). All ^{31}P -NMR spectra are ^1H -broadband decoupled. Chemical shifts are reported in parts per million (ppm, δ), downfield from internal standard tetramethylsilane (TMS) ($\delta = 0.00$ ppm) and are referred to the solvent. Coupling constants are reported in Hertz (Hz). Spectral splitting patterns are designated as *s* (singulet), *d* (doublet), *t* (triplet), *q* (quadruplet), *m* (multiplet or more overlapping signals), *br* (broad signal).

Mass spectra: *VG Tribrid* (EI), *ZAB2 SEQ* (FAB, in a 3-nitrobenzyl-alcohol matrix) or *IonSpec Ultima* (FT-ICR-MALDI, in a 2,5-Dihydroxybenzoësäure Matrix); in *m/z* (% of basis peak).

Optical rotations: $[\alpha]_D^{r.t.}$ was measured on a *Perkin-Elmer 241* polarimeter (10 cm, 1 mL cell) at r.t. The solvent and the concentration (in g/100 mL) are indicated.

Anal. HPLC: *Knauer* HPLC system (pump type 64, *EuroChrom 2000* integration package, degaser, UV detector (variable-wavelength monitor)). The following columns were used: *Chiralcel OD and LiCrosorb Si-60*.

Gas Chromatography was performed using a *Carlo Erba Fractovap 4160* or a *CE Instruments GC 8000 Top*. Interpretation of the spectra was accomplished using the interpretation software *Chrom-Card* by *CE Instruments*. The following capillary columns were used: β -Dex 120 (30m x 0.25mm ID, *SUPELCO*), γ -Dex 120 (30m x 0.25mm ID, *SUPELCO*). Hydrogen gas was used as carrier gas. Detection was done by flame ionisation. The injection volume was 1 μ l.

Elemental analyses were performed by the Microanalytical Laboratory of the Laboratorium für Organische Chemie, ETH-Zürich.

Diastereoisomeric ratios were determined by ^1H NMR.

3. Preparations

General Procedure 1 (GP 1) for the Methylthiomethylation of Oxazolidinones. To a solution (or suspension) of oxazolidinone (1 eq.) in THF (1 M) was added BuLi (1.05 eq.) at 0°. After stirring for 10 min, DMSO (fivefold excess compared to the amount of THF) and MTMCl (1.2 eq.) were added consecutively to the reaction mixture. After stirring for 4 h at rt, the reaction mixture was quenched with sat. aq. NH₄Cl soln. and diluted with Et₂O. The org. layer was separated and the aq. layer was extracted with Et₂O (2x). The combined org. layers were washed with H₂O (1x), dried (MgSO₄) and concentrated under reduced pressure. The crude product was purified by FC.

General Procedure 2 (GP 2) for the Addition of *N,S*-Acetals to Aldehydes, Ketones and Imine Derivatives. To a solution of *N,S*-acetal (1 eq.) in THF (0.2 M) or Et₂O (0.2 M) was added BuLi (1.2 eq.) at -78°. After stirring for 5 min, the reaction mixture was cooled to -100° (or kept at -78°) and an aldehyde, ketone or imine derivative (1.3 eq.) was added dropwise neat or as a solution in THF (ca. 1 M) or Et₂O (ca. 1 M). It was allowed to warm to -78° within 20 min and then the reaction was stopped by quenching with sat. aq. NH₄Cl soln. The reaction mixture was diluted with Et₂O, the org. layer was separated and the aq. layer was extracted with CH₂Cl₂ (2x). The combined org. layers were dried (MgSO₄) and concentrated under reduced pressure. The crude product was purified by trituration, FC or recrystallization.

General Procedure 3 (GP 3) for the Transformation of Addition Products to 1,2-Diols Using Hg(O₂CCF₃)₂/NaBH₄/DBU. To a solution (or suspension) of addition product (1 eq.) in THF/MeCN/H₂O (2:2:1; 0.1 M) was added Hg(O₂CCF₃)₂ (1.1 eq.) at r.t. After stirring for 5 min,

H_2O was added and the reaction mixture was diluted with Et_2O . The org. layer was separated and the aq. layer was extracted with Et_2O (2x). The combined org. layers were dried (MgSO_4) and concentrated under reduced pressure. The crude product was dissolved in $\text{THF}/\text{H}_2\text{O}$ (4:1, 0.15 M), NaBH_4 (0.75 eq.) and DBU (0.5 eq.) were added consecutively at 0° . The auxiliary **1** precipitated in the course of the reaction. After stirring for 15 min, sat. aq. NH_4Cl soln. and Et_2O were added and the precipitate was filtered off. The precipitate was washed with sat. aq. NH_4Cl soln., H_2O and Et_2O and dried under h.v. to recover **1** as a white solid. The filtrate was diluted with Et_2O , the org. layer was separated and the aq. layer was extracted with Et_2O (2x). The combined org. layers were dried (MgSO_4) and concentrated under reduced pressure. The crude product was purified by FC.

General Procedure 4 (GP 4) for the Transformation of Addition Products to 1,2-Diols Using $\text{Hg}(\text{O}_2\text{CCF}_3)_2/\text{RLi}$ or RMgCl . A solution (or suspension) of addition product (1 eq.) in $\text{THF}/\text{MeCN}/\text{H}_2\text{O}$ (2:2:1; 0.1 M) was treated with $\text{Hg}(\text{O}_2\text{CCF}_3)_2$ (1.1 eq.) according to *GP 3*. The crude product was dissolved in THF (0.25 M) and RLi (4 eq.) or RMgCl (4 eq.) was added at -78° . After stirring for 10 min at -78° , the cooling bath was removed and it was stirred for another 10 min. The auxiliary **1** precipitated in the course of the reaction. Then, sat. aq. NH_4Cl soln. and Et_2O were added and the precipitate was filtered off. The precipitate was washed with sat. aq. NH_4Cl soln., H_2O and Et_2O and dried under h.v. to recover **1** as a white solid. The filtrate was diluted with Et_2O , the org. layer was separated and the aq. layer was extracted with Et_2O (2x). The combined org. layers were dried (MgSO_4) and concentrated under reduced pressure. The crude product was purified by FC.

General Procedure 5 (GP 5) for the Transformation of Addition Products to *N*-Acyl-

oxazolidinones. A solution (or suspension) of addition product (1 eq.) in THF/MeCN/H₂O (2:2:1; 0.1 M) was treated with Hg(O₂CCF₃)₂ (1.1 eq.) according to *GP 3*. The crude product was dissolved in CH₂Cl₂ (0.15 M) and treated with PCC (2.1 eq.) and powdered 4 Å molecular sieves (1 weight eq. to PCC) at r.t. After stirring for 2.5 h, the reaction mixture was diluted with Et₂O and filtered through a silica plug eluting with pentane/Et₂O (1:1). The crude product was purified by FC or recrystallization.

General Procedure 6 (GP 6) for the Methanolysis of *N*-Acyl-oxazolidinones to 2-Hydroxy

Methylesters. To a solution of *N*-acyl-oxazolidinone (1 eq.) in MeOH/THF (2:1, 0.15 M) was added DBU (2 eq.) and LiBr (5 eq.) consecutively at 0°. The auxiliary **1** precipitated in the course of the reaction. After stirring for 45 min, sat. aq. NH₄Cl soln. and Et₂O were added and the precipitate was filtered off. The precipitate was washed with sat. aq. NH₄Cl soln., H₂O and Et₂O and dried under h.v. to recover **1** as a white solid. The filtrate was diluted with Et₂O, the org. layer was separated and the aq. layer was extracted with Et₂O (2x). The combined org. layers were dried (MgSO₄) and concentrated under reduced pressure. The crude product was purified by FC.

General Procedure 7 (GP 7) for the Transformation of Addition Products to 4-Hydroxy-2-alkenoate and Butenolides.

A solution (or suspension) of addition product (1 eq.) in THF/MeCN/H₂O (2:2:1; 0.1 M) was treated with Hg(O₂CCF₃)₂ (1.1 eq.) according to *GP 3*. The crude product was dissolved in CH₂Cl₂ (0.15 M), DBU (0.5 eq.) and (methoxycarbonylmethylen)triphenylphosphorane (2 eq.) were added consecutively at r.t. After stirring for 12 h at r.t, sat. aq. NH₄Cl soln. was added. The org. layer was separated and the aq. layer was extracted with CH₂Cl₂ (2x). The combined org. layers were dried (MgSO₄) and

concentrated under reduced pressure. The crude product was triturated in Et_2O for 30 min, the insoluble material was filtered off, washed with 1 N HCl and H_2O , triturated with hexane and CH_2Cl_2 and dried under h.v. to recover **1** as a white solid. The filtrate was concentrated under reduced pressure and purified by FC.

(S)-4-Isopropyl-3-methoxymethyl-5,5-diphenyl-oxazolidin-2-one (2). To a suspension of **1** (2.00 g, 7.10 mmol) in THF (30 mL) was added BuLi (5.44 mL, 8.16 mmol) at 0°. After stirring for 10 min, MOMCl (650 μL , 8.51 mmol) was added and the reaction mixture was stirred for 5 h at r.t. Then the mixture was quenched with sat. aq. NH_4Cl soln. and diluted with Et_2O . The org. layer was separated and the aq. layer was extracted with Et_2O (2x). The combined org. layers were dried (MgSO_4) and concentrated under reduced pressure. The crude product was recrystallized (AcOEt/hexane) to yield **2** (1.66 g, 72%). White solid. **M.p.** 115-117°. $[\alpha]_{\text{D}}^{\text{r.t.}} = -183.8$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3008w, 2966w, 1751s, 1600w, 1493w, 1450m, 1420m, 1387w, 1088m, 1001m. **¹H-NMR** (300 MHz, CDCl_3): 0.70 (*d*, $J = 6.5$, 3 H, Me); 1.05 (*d*, $J = 7.2$, 3 H, Me); 1.88-2.01 (*m*, 1 H, Me_2CH); 2.86 (*s*, 3 H, OMe); 4.54 (*d*, $J = 1.9$, 1 H, NCH); 4.72 (*d*, $J = 11.2$, 1 H, CH_2); 4.83 (*d*, $J = 11.2$, 1 H, CH_2); 7.21-7.38 (*m*, 6 arom. H); 7.43-7.46 (*m*, 2 arom. H); 7.61-7.64 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, CDCl_3): 15.4, 21.9 (Me); 29.6 (CH); 55.8 (Me); 66.5 (CH); 76.3 (CH_2); 88.4 (C); 125.3, 126.0, 127.6, 128.1, 128.6 (CH); 138.8, 144.1, 157.4 (C). **FAB-MS**: 282 (7, $[M+\text{H}-\text{CO}_2]^+$), 250 (100, $[M-\text{OMe}-\text{CO}_2]^+$). **Anal.** calc. for $\text{C}_{20}\text{H}_{23}\text{NO}_3$ (325.41): C 73.82, H 7.12, N 4.30; found: C 73.54, H 7.33, N 4.39.

(S)-4-Isopropyl-3-methylsulfanylmethyl-5,5-diphenyl-oxazolidin-2-one (3) and (S)-4-Isopropyl-3-*{[(S)-4-isopropyl-2-oxo-5,5-diphenyl-oxazolin-3-yl]methyl}*-5,5-diphenyl-oxazolidin-2-one (6).

a) To a suspension of **1** (5.15 g, 18.3 mmol) in DME (40 mL) was added BuLi (14.4 mL, 20.1

mmol) at 0°. After stirring for 10 min, NaI (2.74 g, 18.3 mmol) and chloromethyl methyl sulfide (MTMCl) (1.89 mL, 18.3 mmol) were added consecutively to the reaction mixture. After stirring for 12 h at r.t., the reaction mixture was quenched with sat. aq. NH₄Cl soln. and diluted with Et₂O. The org. layer was separated and the aq. layer was extracted with Et₂O (2x). The combined org. layers were washed with H₂O (1x), dried (MgSO₄) and concentrated under reduced pressure. Compounds **3** and **6** were obtained as a 4:1 mixture, determined by ¹H-NMR of the crude product. Compounds **3** and **6** were separated by FC (pentane/AcOEt 10:1) to afford **3** (3.28 g, 53%) and **6** (yield not determined).

b) Compound **1** (15.7 g, 55.8 mmol) was treated with BuLi (38.8 mL, 58.6 mmol) and MTMCl (5.60 mL, 67.0 mmol) according to *GP 1*. The crude product was purified by FC (pentane/Et₂O 5:1) to afford **3** (16.4 g, 86%). **3**: White solid. **M.p.** 124-125°. $[\alpha]_D^{r.t.} = -89.6$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 2954w, 1744s, 1451w, 1421m, 1041w, 995w. **¹H-NMR** (300 MHz, CDCl₃): 0.72 (*d*, *J* = 6.5, 3 H, Me); 1.04 (*d*, *J* = 7.2, 3 H, Me); 1.37 (*s*, 3 H, SMe); 1.88-2.03 (*m*, 1 H, Me₂CH); 4.06 (*d*, *J* = 14.3, 1 H, CH₂); 4.76 (*d*, *J* = 1.9, 1 H, NCH); 4.95 (*d*, *J* = 14.3, 1 H, CH₂); 7.20-7.38 (*m*, 6 arom. H); 7.43-7.49 (*m*, 2 arom. H); 7.66-7.72 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, CDCl₃): 12.9, 15.6, 22.4 (Me); 29.7 (CH); 48.7 (CH₂); 64.9 (CH); 88.3 (C); 125.3, 125.9, 127.5, 128.2, 128.6 (CH); 138.7, 144.2, 156.9 (C). **FAB-MS**: 342 (2, [M+H]⁺), 294 (12, [M-SMe]⁺), 250 (100, [M-SMe-CO₂]⁺), 206 (10). **Anal.** calc. for C₂₀H₂₃NO₂S (341.47): C 70.35, H 6.79, N 4.10; found: C 70.25, H 7.08, N 4.09.

6: White solid. **M.p.** 190-192°. $[\alpha]_D^{r.t.} = -152.9$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3008w, 2966w, 1750s, 1493w, 1450w, 1392w, 1326w, 1037w, 1003w. **¹H-NMR** (300 MHz, CDCl₃): 0.59 (*d*, *J* = 6.9, 6 H, Me); 0.89 (*d*, *J* = 7.5, 6 H, Me); 1.82-1.97 (*m*, 2 H, Me₂CH); 4.27 (*d*, *J* = 1.9, 2 H, NCH); 5.07 (*s*, 2 H, CH₂); 7.10-7.30 (*m*, 16 arom. H); 7.33-7.37 (*m*, 4 arom. H). **¹³C-NMR** (75 MHz, CDCl₃): 15.6, 21.4 (Me); 29.1 (CH); 53.0 (CH₂); 66.9 (CH); 88.2 (C); 125.5, 126.3,

127.6, 128.0, 128.2, 128.3 (CH); 139.0, 143.1, 157.4 (C). **FAB-MS:** 575 (23, $[M+H]^+$), 530 (14, $[M-CO_2]^+$), 250 (100, $[M-CO_2-C_{18}H_{18}NO_2]^+$). **Anal.** calc. for $C_{37}H_{38}N_2O_4$ (574.72): C 77.33, H 6.66, N 4.87; found: C 77.33, H 6.71, N 4.94.

(S)-4-Isopropyl-5,5-diphenyl-3-phenylsulfanyl methyl-oxazolidin-2-one (4). To a suspension of **1** (1.07 g, 3.80 mmol) in DME (8 mL) was added BuLi (2.89 mL, 4.18 mmol) at 0°. After stirring for 10 min, NaI (627 mg, 4.18 mmol) and chloromethyl phenyl sulfide (542 μ L, 4.18 mmol) were added consecutively to the reaction mixture. After stirring for 12 h at r.t., the reaction mixture was quenched with sat. aq. NH_4Cl soln. and diluted with Et_2O . The org. layer was separated and the aq. layer was extracted with Et_2O (2x). The combined org. layers were washed with H_2O (1x), dried ($MgSO_4$) and concentrated under reduced pressure. The crude product was purified by FC (pentane/AcOEt 10:1) to afford **4** (807 mg, 53%). White solid. **M.p.** 137-141°. $[\alpha]_D^{r.t.} = +9.3$ ($c = 1$, $CHCl_3$). **IR** ($CHCl_3$): 3008w, 2966w, 1749s, 1450w, 1417m, 1040w, 1002w, 900w. **¹H-NMR** (400 MHz, $CDCl_3$): 0.69 (d, $J = 6.8$, 3 H, Me); 1.07 (d, $J = 7.4$, 3 H, Me); 1.88-1.98 (m, 1 H, Me_2CH); 4.38 (d, $J = 14.5$, 1 H, CH_2); 4.80 (d, $J = 1.6$, 1 H, NCH); 5.41 (d, $J = 14.5$, 1 H, CH_2); 6.92-6.95 (m, 2 arom. H); 7.00-7.07 (m, 3 arom. H); 7.16-7.30 (m, 6 arom. H); 7.39-7.42 (m, 2 arom. H); 7.46-7.50 (m, 2 arom. H). **¹³C-NMR** (100 MHz, $CDCl_3$): 15.5, 22.6 (Me); 29.7 (CH); 49.3 (CH_2); 65.6 (CH); 88.1 (C); 125.4, 126.1, 127.0, 127.6, 128.0, 128.1, 128.4, 128.9, 130.4 (CH); 132.7, 138.9, 143.8, 156.2 (C). **FAB-MS:** 294 (5, $[M-SPh]^+$), 250 (100, $[M-SPh-CO_2]^+$). **Anal.** calc. for $C_{25}H_{25}NO_2S$ (403.54): C 74.41, H 6.24, N 3.47, S 7.95; found: C 74.24, H 6.36, N 3.52, S 8.04.

(S)-3-tert-Butylsulfanyl methyl-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (5). To a suspension of **1** (1.05 g, 3.73 mmol) in DME (8 mL) was added BuLi (2.83 mL, 4.11 mmol) at 0°. After stirring

for 10 min, NaI (615 mg, 4.18 mmol) and chloromethyl *tert*-butyl sulfide (475 μ L, 4.11 mmol) were added consecutively to the reaction mixture. After stirring for 12 h at r.t., the reaction mixture was quenched with sat. aq. NH_4Cl soln. and diluted with Et_2O . The org. layer was separated and the aq. layer was extracted with Et_2O (2x). The combined org. layers were washed with H_2O (1x), dried (MgSO_4) and concentrated under reduced pressure. The crude product was purified by FC (pentane/AcOEt 9:1) to afford **5** (1.10 g, 77%). White solid. **M.p.** 174-175°. $[\alpha]_{\text{D}}^{\text{r.t.}} = -71.6$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3007w, 2966m, 1742s, 1493w, 1450m, 1424m, 1368w, 1040w, 1002w, 880w. **$^1\text{H-NMR}$** (300 MHz, CDCl_3): 0.69 (*d*, $J = 6.9$, 3 H, Me); 0.97 (*s*, 9 H, *t*Bu); 1.07 (*d*, $J = 7.5$, 3 H, Me); 1.83-1.98 (*m*, 1 H, Me_2CH); 4.16 (*d*, $J = 15.1$, 1 H, CH_2); 4.80 (*d*, $J = 1.6$, 1 H, NCH); 5.05 (*d*, $J = 15.1$, 1 H, CH_2); 7.19-7.36 (*m*, 6 arom. H); 7.43-7.47 (*m*, 2 arom. H); 7.63-7.67 (*m*, 2 arom. H). **$^{13}\text{C-NMR}$** (75 MHz, CDCl_3): 15.4, 22.7 (Me); 29.6 (CH); 30.7 (Me); 43.7 (C); 44.2 (CH_2); 65.7 (CH); 87.9 (C); 125.6, 126.0, 127.5, 128.0, 128.1, 128.4 (CH); 139.0, 144.4, 155.8 (C). **FAB-MS**: 767 (30, $[2M+\text{H}]^+$), 621 (27), 384 (7, $[M+\text{H}]^+$), 294 (8, $[M-\text{StBu}]^+$), 250 (100, $[M-\text{StBu}-\text{CO}_2]^+$). **Anal.** calc. for $\text{C}_{23}\text{H}_{29}\text{NO}_2\text{S}$ (383.55): C 72.02, H 7.62, N 3.65; found: C 72.13, H 7.50, N 3.66.

(S)-3-((1*S*,2*S*)-2-Hydroxy-1-methylsulfanyl-2-phenyl-ethyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**7b**). Compound **3** (430 mg, 1.26 mmol) was treated with BuLi (0.97 mL, 1.51 mmol) and benzaldehyde (166 μ L, 1.64 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 8:1) yielded **7b** (505 mg, 90%) as a 93:7 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized twice (MeOH) to afford **7b** (dr 97:3). White solid. **M.p.** 200-201°. $[\alpha]_{\text{D}}^{\text{r.t.}} = -72.2$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3512w, 3008w, 2965w, 1729s, 1601w, 1494w, 1450m, 1422m, 1292w, 1046m. **$^1\text{H-NMR}$** (300 MHz, CDCl_3): 0.81 (*d*, $J = 6.5$, 3 H, Me); 1.08 (*d*, $J = 7.5$, 3 H, Me); 1.36 (*s*, 3 H, SMe); 2.00-2.07 (*m*, 1 H, Me_2CH); 4.40 (*d*,

$J = 9.3$, 1 H, CHSMe); 4.46 ($d, J = 5.6$, 1 H, OH); 4.70 ($d, J = 2.2$, 1 H, NCH); 5.47 ($dd, J = 5.6$, 9.3, 1 H, CH(OH)); 7.22-7.45 (m , 13 arom. H); 7.72-7.75 (m , 2 arom. H). **¹³C-NMR** (75 MHz, CDCl₃): 10.5, 15.5, 21.9 (Me); 29.9, 68.4, 68.7, 74.0 (CH); 89.0 (C); 125.2, 125.9, 127.0, 127.5, 128.1, 128.18, 128.21, 128.5 (CH); 138.4, 140.9, 143.8, 157.5 (C). **FAB-MS**: 446 (2, [M-H]⁺), 400 (47, [M-SMe]⁺), 356 (100, [M-SMe-CO₂]⁺), 296 (40). **Anal.** calc. for C₂₇H₂₉NO₃S (447.60): C 72.45, H 6.53, N 3.13; found: C 72.15, H 6.57, N 3.32.

(S)-3-((1*S*,2*S*)-2-Hydroxy-2-phenyl-1-phenylsulfanyl-ethyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**7c**). Compound **4** (403 mg, 0.999 mmol) was treated with BuLi (0.82 mL, 1.20 mmol) and benzaldehyde (131 μ L, 1.30 mmol) according to *GP 2*. Trituration of the crude product (boiling hexane, 2x 10 mL) yielded **7c** (360 mg, 71%) as a 95:5 mixture with its C(2)-OH epimer and 5 mol% of inseparable unidentified side products. White solid. **M.p.** 200-203°. $[\alpha]_D^{r.t.} = -191.5$ ($c = 1$, CHCl₃). **IR** (CHCl₃): 3335w, 3063w, 3008w, 2962w, 1734s, 1494w, 1451m, 1423m, 1091w, 1000w. **¹H-NMR** (400 MHz, CDCl₃): 0.55 ($d, J = 6.8$, 3 H, Me); 0.89 ($d, J = 7.3$, 3 H, Me); 1.96-2.08 (m , 1 H, Me₂CH); 4.37 ($d, J = 6.0$, 1 H, OH); 4.51 ($d, J = 1.9$, 1 H, NCH); 4.81 ($d, J = 8.7$, 1 H, CHSMe); 5.36 ($dd, J = 6.0, 8.7$, 1 H, CH(OH)); 6.78-6.81 (m , 2 arom. H); 7.06-7.42 (m , 16 arom. H); 7.53-7.59 (m , 2 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 15.2, 21.6 (Me); 29.8, 69.8, 74.0, 75.1 (CH); 88.8 (C); 125.4, 126.3, 127.65, 127.71, 127.8, 128.0, 128.2, 128.4, 128.7, 128.9, 132.8 (CH); 133.8, 138.7, 140.5, 144.0, 157.3 (C). **FAB-MS**: 492 (5, [M+H-H₂O]⁺), 448 (7), 400 (52, [M-SPh]⁺), 356 (100, [M-SPh-CO₂]⁺), 296 (11).

(S)-3-((1*S*,2*S*)-2-Hydroxy-1-methylsulfanyl-2-naphthalen-2-yl-ethyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**9a**). Compound **3** (357 mg, 1.05 mmol) was treated with BuLi (0.84 mL, 1.25 mmol) and a solution of 2-naphthaldehyde (212 mg, 1.36 mmol) in THF (1 mL) according to *GP*

2. Purification of the crude product by FC (pentane/AcOEt 7:1) yielded **9a** (454 mg, 87%) as a 91:9 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized twice (MeOH) to afford **9a** (dr 96:4). White solid. **M.p.** 209-211°. $[\alpha]_D^{r.t.} = -91.6$ ($c = 1$, CHCl₃). **IR** (CHCl₃): 3503w, 3060w, 3008m, 2967w, 1728s, 1601w, 1494w, 1450m, 1423m, 1293w, 1046m, 1002m. **¹H-NMR** (300 MHz, CDCl₃): 0.84 (d, $J = 6.9$, 3 H, Me); 1.11 (d, $J = 7.5$, 3 H, Me); 1.40 (s, 3 H, SMe); 2.03-2.13 (m, 1 H, Me₂CH); 4.51-4.56 (m, 2 H, CHSMe, OH); 4.74 (d, $J = 1.9$, 1 H, NCH); 5.65 (dd, $J = 5.3, 9.3$, 1 H, CH(OH)); 7.22-7.40 (m, 6 arom. H); 7.43-7.55 (m, 5 arom. H); 7.74-7.76 (m, 2 arom. H); 7.81-7.89 (m, 4 arom. H). **¹³C-NMR** (75 MHz, CDCl₃): 10.6, 15.7, 22.0 (Me); 30.0, 68.5, 68.6, 74.0 (CH); 89.1 (C); 124.6, 125.1, 125.3, 126.0, 126.1, 126.5, 127.6, 128.06, 128.14, 128.3, 128.6 (CH); 133.1, 133.2, 138.3, 138.5, 143.9, 157.6 (C). **FAB-MS**: 480 (8, [M+H-H₂O]⁺), 450 (46, [M-SMe]⁺), 436 (22), 406 (100, [M-SMe-CO₂]⁺), 296 (27). **Anal.** calc. for C₃₁H₃₁NO₃S (497.66): C 74.82, H 6.28, N 2.81; found: C 74.87, H 6.48, N 2.76.

(S)-3-[(1*S*,2*S*)-2-Hydroxy-2-(4-methoxy-phenyl)-1-methylsulfanyl-ethyl]-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**9b**). Compound **3** (357 mg, 1.05 mmol) was treated with BuLi (0.81 mL, 1.25 mmol) and *p*-anisaldehyde (165 μ L, 1.36 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 6:1) yielded **9b** (459 mg, 92%) as a 91:9 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized twice (MeOH) to afford **9b** (dr $\geq 99:1$). White solid. **M.p.** 192-194°. $[\alpha]_D^{r.t.} = -92.2$ ($c = 1$, CHCl₃). **IR** (CHCl₃): 3500w, 3008m, 2965w, 1729s, 1612w, 1515m, 1450m, 1422m, 1304w, 1035m, 1002m, 836w. **¹H-NMR** (300 MHz, CDCl₃): 0.83 (d, $J = 6.9$, 3 H, Me); 1.10 (d, $J = 7.5$, 3 H, Me); 1.36 (s, 3 H, SMe); 2.00-2.11 (m, 1 H, Me₂CH); 3.97 (s, 3 H, OMe); 4.30 (d, $J = 5.3$, 1 H, OH); 4.37 (d, $J = 9.3$, 1 H, CHSMe); 4.70 (d, $J = 1.9$, 1 H, NCH); 5.42 (dd, $J = 5.3, 9.3$, 1 H, CH(OH)); 6.85-6.90 (m,

2 arom. H); 7.22-7.39 (*m*, 8 arom. H); 7.45-7.48 (*m*, 2 arom. H); 7.72-7.75 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, CDCl₃): 10.5, 15.7, 22.0 (Me); 30.0 (CH); 55.2 (Me); 68.5, 69.0, 73.4 (CH); 89.0 (C); 113.7, 125.3, 126.0, 127.6, 128.16, 128.22, 128.6 (CH); 133.2, 138.6, 144.0, 157.5, 159.4 (C). **FAB-MS**: 460 (43, [M+H-H₂O]⁺), 416 (63, [M+H-H₂O-CO₂]⁺), 386 (100, [M-SMe-CO₂]⁺), 326 (20), 296 (37). **Anal.** calc. for C₂₈H₃₁NO₄S (477.62): C 70.41, H 6.54, N 2.93; found: C 70.25, H 6.74, N 3.09.

(S)-3-((1*S*,2*S*)-2-[3-(*tert*-Butyl-dimethyl-silyloxy)-phenyl]-2-hydroxy-1-methylsulfanyl-ethyl]-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (9c). Compound **3** (360 mg, 1.05 mmol) was treated with BuLi (0.84 mL, 1.27 mmol) and 3-(*tert*-butyl-dimethyl-silyloxy)benzaldehyde (324 μ L, 1.37 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 10:1) yielded **9c** (556 mg, 91%) as a 91:9 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized three times (MeOH) to afford **9c** (dr \geq 99:1). White solid. **M.p.** 192-193°. $[\alpha]_D^{r.t.} = -72.9$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3493w, 2951m, 2930m, 2858w, 1728s, 1603w, 1587w, 1487m, 1450m, 1422m, 1278m, 1002m, 838s. **¹H-NMR** (300 MHz, CDCl₃): 0.19 (*s*, 6 H, Me₂Si); 0.81 (*d*, *J* = 6.5, 3 H, Me); 0.98 (*s*, 9 H, *t*Bu); 1.09 (*d*, *J* = 7.5, 3 H, Me); 1.35 (*s*, 3 H, SMe); 1.97-2.11 (*m*, 1 H, Me₂CH); 4.36 (*d*, *J* = 9.3, 1 H, CHSMe); 4.40 (*d*, *J* = 5.6, 1 H, OH); 4.70 (*d*, *J* = 2.2, 1 H, NCH); 5.40 (*dd*, *J* = 5.6, 9.3, 1 H, CH(OH)); 6.76-6.80 (*m*, 1 arom. H); 6.88-6.90 (*m*, 1 arom. H); 6.99-7.01 (*m*, 1 arom. H); 7.17-7.40 (*m*, 7 arom. H); 7.45-7.48 (*m*, 2 arom. H); 7.72-7.75 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, CDCl₃): -4.5, 10.6, 15.6 (Me); 18.1 (C); 22.0, 25.6 (Me); 30.0, 68.5, 68.8, 73.9 (CH); 89.0 (C); 119.0, 119.8, 119.9, 125.3, 125.9, 127.6, 128.1, 128.2, 128.5, 129.2 (CH); 138.5, 142.5, 143.9, 155.5, 157.5 (C). **FAB-MS**: 530 (10, [M-SMe]⁺), 516 (13), 486 (100, [M-SMe-CO₂]⁺), 426 (15), 296 (5). **Anal.** calc. for C₃₃H₄₃NO₄SiS (577.86): C 68.59, H 7.50, N 2.42; found: C 68.68, H 7.61, N 2.43.

*4-[(1*S*,2*S*)-1-Hydroxy-2-((*S*)-4-isopropyl-2-oxo-5,5-diphenyl-oxazolidin-3-yl)-2-methylsulfanyl-ethyl]-benzonitrile (**9d**).* Compound **3** (342 mg, 1.00 mmol) was treated with BuLi (0.80 mL, 1.20 mmol) and a solution of 4-cyanobenzaldehyde (170 mg, 1.30 mmol) in THF (1 mL) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 5:1) yielded **9d** (362 mg, 77%) as a 85:15 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized twice (MeOH) to afford **9d** (dr \geq 99:1). White solid. **M.p.** 193-194°. $[\alpha]_D^{r.t.} = -97.8$ ($c = 1$, CHCl₃). **IR** (CHCl₃): 3483w, 3067w, 3008w, 2986w, 2231m, 1728s, 1610w, 1494w, 1450m, 1422m, 1047m, 1002m, 837w. **¹H-NMR** (300 MHz, CDCl₃): 0.79 (*d*, $J = 6.5$, 3 H, Me); 1.05 (*d*, $J = 7.5$, 3 H, Me); 1.36 (*s*, 3 H, SMe); 1.98-2.12 (*m*, 1 H, Me₂CH); 4.31 (*d*, $J = 9.3$, 1 H, CHSMe); 4.61 (*d*, $J = 5.3$, 1 H, OH); 4.67 (*d*, $J = 2.2$, 1 H, NCH); 5.51 (*dd*, $J = 5.3$, 9.3, 1 H, CH(OH)); 7.22-7.40 (*m*, 6 arom. H); 7.42-7.46 (*m*, 2 arom. H); 7.51-7.54 (*m*, 2 arom. H); 7.61-7.64 (*m*, 2 arom. H); 7.69-7.73 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, CDCl₃): 10.3, 15.7, 22.0 (Me); 30.0, 68.2, 68.5, 73.4 (CH); 89.3, 111.9, 118.6 (C); 125.2, 125.9, 127.7, 128.0, 128.2, 128.4, 128.6, 132.0 (CH); 138.3, 143.7, 146.2, 157.6 (C). **FAB-MS**: 945 (13, [2*M*]⁺), 473 (5, [*M*+H]⁺), 425 (45, [*M*-SMe]⁺), 381 (100, [*M*-SMe-CO₂]⁺), 340 (15), 296 (16). **Anal.** calc. for C₂₈H₂₈N₂O₃S (472.61): C 71.16, H 5.97, N 5.93; found: C 71.05, H 5.97, N 5.93.

*(S)-3-((1*S*,2*S*)-2-Furan-2-yl-2-hydroxy-1-methylsulfanyl-ethyl)-4-isopropyl-5,5-diphenyl oxazolidin-2-one (**9e**).* Compound **3** (360 mg, 1.05 mmol) was treated with BuLi (0.84 mL, 1.27 mmol) and furfural (114 μ L, 1.37 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 6:1) yielded **9e** (413 mg, 90%) as a 90:10 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized twice (MeOH) to afford **9e** (dr \geq 99:1). White solid. **M.p.** 147-148°. $[\alpha]_D^{r.t.} = -99.6$ ($c = 1$, CHCl₃). **IR** (CHCl₃): 3518w, 3008w, 2969w, 1728s,

1599w, 1494w, 1450m, 1423m, 1150w, 1046m, 1003m, 922w. **1H-NMR** (300 MHz, CDCl₃): 0.74 (d, *J* = 6.9, 3 H, Me); 1.11 (d, *J* = 7.2, 3 H, Me); 1.39 (s, 3 H, SMe); 1.97-2.11 (m, 1 H, Me₂CH); 4.69-4.74 (m, 3 H, CHSMe, OH, NCH); 5.53 (dd, *J* = 7.2, 8.7, 1 H, CH(OH)); 6.34-6.36 (m, 1 arom. H); 6.38-6.40 (m, 1 arom. H); 7.20-7.39 (m, 7 arom. H); 7.45-7.47 (m, 2 arom. H); 7.72-7.75 (m, 2 arom. H). **13C-NMR** (75 MHz, CDCl₃): 10.4, 15.2, 21.6 (Me); 29.8, 65.3, 68.4, 68.5 (CH); 89.1 (C); 108.1, 110.4, 125.2, 125.8, 127.5, 128.1, 128.2, 128.5 (CH); 138.4, 141.8 (C); 143.8 (CH); 153.0, 157.4 (C). **FAB-MS**: 420 (9, [M+H-H₂O]⁺), 390 (33, [M-SMe]⁺), 346 (100, [M-SMe-CO₂]⁺), 296 (32). **Anal.** calc. for C₂₅H₂₇NO₄S (437.56): C 68.63, H 6.22, N 3.20; found: C 68.69, H 6.29, N 3.15.

(S)-3-((1S,2S)-2-Hydroxy-1-methylsulfanyl-2-thiophen-2-yl-ethyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (9f). Compound **3** (370 mg, 1.08 mmol) was treated with BuLi (0.87 mL, 1.30 mmol) and 2-thiophenecarboxaldehyde (129 μ L, 1.52 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 7:1) yielded **9f** (454 mg, 92%) as a 92:8 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized three times (MeOH) to afford **9f** (dr \geq 99:1). White solid. **M.p.** 176-178°. $[\alpha]_D^{r.t.} = -101.8$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3494w, 3008w, 2968w, 1728s, 1600w, 1494w, 1450m, 1423m, 1150w, 1038m, 1002m, 844w. **1H-NMR** (300 MHz, CDCl₃): 0.82 (d, *J* = 6.9, 3 H, Me); 1.10 (d, *J* = 7.5, 3 H, Me); 1.37 (s, 3 H, SMe); 1.99-2.11 (m, 1 H, Me₂CH); 4.43 (d, *J* = 9.3, 1 H, CHSMe); 4.54 (d, *J* = 5.6, 1 H, OH); 4.71 (d, *J* = 1.9, 1 H, NCH); 5.57 (dd, *J* = 5.6, 9.3, 1 H, CH(OH)); 6.95-6.98 (m, 1 arom. H); 7.10-7.11 (m, 1 arom. H); 7.22-7.40 (m, 7 arom. H); 7.45-7.48 (m, 2 arom. H); 7.72-7.75 (m, 2 arom. H). **13C-NMR** (75 MHz, CDCl₃): 10.3, 15.6, 21.9 (Me); 30.0, 68.5, 69.0, 70.0 (CH); 89.1 (C); 124.9, 125.2, 125.7, 125.9, 126.5, 127.6, 128.1, 128.2, 128.5 (CH); 138.4, 143.8, 144.2, 157.4 (C). **FAB-MS**: 436 (24, [M+H-H₂O]⁺), 406 (69, [M-SMe]⁺), 362 (100, [M-SMe-CO₂]⁺),

340 (32), 296 (45). **Anal.** calc. for $C_{25}H_{27}NO_3S_2$ (453.63): C 66.19, H 6.00, N 3.09; found: C 66.13, H 6.10, N 3.24.

(S)-3-[(1S,2S)-2-Hydroxy-2-(1-methyl-1H-pyrrol-2-yl)-1-methylsulfanyl-ethyl]-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (9g). Compound **3** (370 mg, 1.08 mmol) was treated with BuLi (0.87 mL, 1.30 mmol) and 1-methyl-2-pyrrolecarboxaldehyde (151 μ L, 1.41 mmol) according to *GP 2*. Recrystallization (MeOH) of the crude product yielded **9g** (395 mg, 81%) as a 91:9 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized (MeOH) again to afford **9g** (dr \geq 99:1). White solid. **M.p.** 222-224°. $[\alpha]_D^{25} = -113.8$ ($c = 1$, $CHCl_3$). **IR** ($CHCl_3$): 3490w, 3007w, 2964w, 1729s, 1600w, 1492w, 1450m, 1424m, 1305w, 1047w, 1002w, 810w. **¹H-NMR** (300 MHz, $CDCl_3$): 0.88 (*d*, $J = 6.9$, 3 H, Me); 1.17 (*d*, $J = 7.5$, 3 H, Me); 1.34 (*s*, 3 H, SMe); 2.02-2.14 (*m*, 1 H, Me_2CH); 3.68 (*s*, 3 H, NMe); 3.93 (*d*, $J = 4.8$, 1 H, OH); 4.61 (*d*, $J = 10.3$, 1 H, $CHSMe$); 4.74 (*d*, $J = 2.2$, 1 H, NCH); 5.57 (*dd*, $J = 4.8, 10.3$, 1 H, $CH(OH)$); 6.07-6.10 (*m*, 2 arom. H); 6.56-6.58 (*m*, 1 arom. H); 7.22-7.40 (*m*, 6 arom. H); 7.45-7.49 (*m*, 2 arom. H); 7.71-7.75 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, $CDCl_3$): 10.9, 15.7, 22.2 (Me); 30.1 (CH); 34.3 (Me); 65.8, 67.7, 68.4 (CH); 89.1 (C); 106.6, 107.0, 123.0, 125.4, 126.0, 127.7, 128.2, 128.3, 128.6 (CH); 131.9, 138.6, 144.0, 157.5 (C). **FAB-MS**: 450 (6, $[M]^+$), 433 (100, $[M+H-H_2O]^+$), 386 (19, $[M+H-H_2O-SMe]^+$), 340 (20, $[M-H-H_2O-SMe-CO_2]^+$), 296 (21). **Anal.** calc. for $C_{26}H_{30}N_2O_3S$ (450.60): C 69.30, H 6.71, N 6.22; found: C 69.22, H 6.67, N 6.23.

(S)-3-((1S,2S)-2-Hydroxy-1-methylsulfanyl-2-pyridin-3-yl-ethyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (9h). Compound **3** (357 mg, 1.05 mmol) was treated with BuLi (0.84 mL, 1.25 mmol) and 3-pyridinecarboxaldehyde (128 μ L, 1.36 mmol) according to *GP 2*. Recrystallization (MeOH) of the crude product yielded **9h** (339 mg, 72%) as a 96:4 mixture with its C(2)-OH

epimer. For analytical purposes a sample was recrystallized (MeOH) again to afford **9h** (dr \geq 99:1). White solid. **M.p.** $>240^\circ$. $[\alpha]_D^{r.t.} = -29.6$ ($c = 0.45$, CHCl_3). **IR** (CHCl_3): 3494w, 3007w, 2968w, 1728s, 1598w, 1494w, 1450m, 1423m, 1047w, 1002w. **¹H-NMR** (300 MHz, CDCl_3): 0.82 ($d, J = 6.5$, 3 H, Me); 1.06 ($d, J = 7.5$, 3 H, Me); 1.33 (s , 3 H, SMe); 1.97-2.10 (m , 1 H, Me_2CH); 4.31 ($d, J = 9.3$, 1 H, CHSMe); 4.57 ($d, J = 5.6$, 1 H, OH); 4.69 ($d, J = 2.2$, 1 H, NCH); 5.53 (dd , $J = 5.6, 9.3$, 1 H, $\text{CH}(\text{OH})$); 7.22-7.40 (m , 7 arom. H); 7.44-7.47 (m , 2 arom. H); 7.71-7.76 (m , 3 arom. H); 8.53-8.56 (m , 1 arom. H); 8.64-8.65 (m , 1 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 10.0, 15.7, 22.2 (Me); 30.1, 68.5, 68.7, 71.8 (CH); 89.3 (C); 123.4, 125.3, 126.0, 127.8, 128.3, 128.4, 128.7, 134.6 (CH); 136.7, 138.4, 143.8 (C); 149.1, 149.5 (CH); 157.7 (C). **FAB-MS**: 449 (100, $[M+\text{H}]^+$), 401 (13, $[M-\text{SMe}]^+$), 357 (30, $[M-\text{SMe}-\text{CO}_2]^+$). **Anal.** calc. for $\text{C}_{26}\text{H}_{28}\text{N}_2\text{O}_3\text{S}$ (448.58): C 69.62, H 6.29, N 6.24; found: C 69.59, H 6.48, N 6.41.

(S)-3-((1S,2S)-2-Hydroxy-1-methylsulfanyl-4-phenyl-but-3-ynyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (9i). Compound **3** (365 mg, 1.07 mmol) was treated with BuLi (0.86 mL, 1.28 mmol) and phenylpropargyl aldehyde (170 μL , 1.39 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 8:1) yielded **9i** (405 mg, 80%) as a single diastereoisomer. White solid. **M.p.** 69-78 $^\circ$. $[\alpha]_D^{r.t.} = -157.9$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3354w, 3066w, 3008w, 2966w, 2226w, 1729s, 1599w, 1491m, 1450m, 1421m, 1048m, 1002m, 909w. **¹H-NMR** (300 MHz, CDCl_3): 0.83 ($d, J = 6.9$, 3 H, Me); 1.16 ($d, J = 7.5$, 3 H, Me); 1.58 (s , 3 H, SMe); 2.04-2.16 (m , 1 H, Me_2CH); 4.53 ($d, J = 7.0$, 1 H, CHSMe); 4.77 ($d, J = 2.2$, 1 H, NCH); 4.96 (d , $J = 8.7$, 1 H, OH); 5.23 ($dd, J = 7.0, 8.7$, 1 H, $\text{CH}(\text{OH})$); 7.20-7.47 (m , 13 arom. H); 7.69-7.74 (m , 2 arom. H). **¹³C-NMR** (75 MHz, CDCl_3): 11.6, 15.6, 21.7 (Me); 30.1, 65.4, 66.8, 68.5 (CH); 86.0, 87.5, 89.4, 122.3 (C); 125.2, 126.0, 127.7, 128.2, 128.3, 128.5, 128.7, 131.7 (CH); 138.5, 143.9, 157.5 (C). **FAB-MS**: 471 (15, $[M]^+$), 424 (100, $[M-\text{SMe}]^+$), 380 (95, $[M-\text{SMe}-\text{CO}_2]^+$), 320 (48),

296 (41). **Anal.** calc. for $C_{29}H_{29}NO_3S$ (471.62): C 73.86, H 6.20, N 2.97; found: C 73.93, H 6.35, N 3.01.

(S)-3-((1S,2S)-(E)-2-Hydroxy-1-methylsulfanyl-4-phenyl-but-3-enyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (9j). Compound **3** (351 mg, 1.03 mmol) was treated with BuLi (0.82 mL, 1.23 mmol) and *trans*-cinnamaldehyde (169 μ L, 1.34 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 9:1) yielded **9j** (444 mg, 91%) as a 86:14 mixture with its C(2)-OH epimer. For analytical purposes a sample was purified by FC (pentane/AcOEt 9:1) to afford **9j** as a single diastereoisomer. White solid. **M.p.** 160-162°. $[\alpha]_D^{r.t.} = -157.3$ ($c = 1$, $CHCl_3$). **IR** ($CHCl_3$): 3424w, 3008m, 2966w, 1728s, 1599w, 1494w, 1450m, 1422m, 1046w, 1002m, 968w. **¹H-NMR** (300 MHz, $CDCl_3$): 0.82 (*d*, $J = 6.9$, 3 H, Me); 1.09 (*d*, $J = 7.2$, 3 H, Me); 1.47 (*s*, 3 H, SMe); 2.01-2.14 (*m*, 1 H, Me_2CH); 4.28 (*d*, $J = 8.4$, 1 H, CHSMe); 4.40 (*dd*, $J = 0.6, 6.2$, 1 H, OH); 4.76 (*d*, $J = 2.2$, 1 H, NCH); 5.01-5.09 (*m*, 1 H, CH(OH)); 6.40 (*dd*, $J = 6.2, 15.9$, 1 H, $PhCH=CH$); 6.77 (*d*, $J = 15.9$, 1 H, $PhCH=CH$); 7.21-7.40 (*m*, 11 arom. H); 7.46-7.49 (*m*, 2 arom. H); 7.72-7.76 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, $CDCl_3$): 10.3, 15.7, 21.8 (Me); 30.0, 67.5, 68.5, 72.2 (CH); 89.0 (C); 125.3, 125.9, 126.6, 127.6, 127.7, 128.2, 128.3, 128.4, 128.5, 128.6, 131.9 (CH); 136.5, 138.5, 143.9, 157.5 (C). **FAB-MS**: 474 (11, $[M+H]^+$), 456 (100, $[M+H-H_2O]^+$), 426 (98, $[M-SMe]^+$), 382 (90, $[M-SMe-CO_2]^+$), 340 (85), 296 (93). **Anal.** calc. for $C_{29}H_{31}NO_3S$ (473.63): C 73.54, H 6.60, N 2.96; found: C 73.46, H 6.53, N 2.98.

(S)-3-((1S,2S)-2-Hydroxy-3-methyl-1-methylsulfanyl-but-3-enyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (9k). Compound **3** (355 mg, 1.04 mmol) was treated with BuLi (0.83 mL, 1.25 mmol) and methacrolein (111 μ L, 1.35 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 9:1) yielded **9k** (375 mg, 88%) as a 85:15 mixture with its C(2)-

OH epimer. For analytical purposes a sample was purified by FC (pentane/AcOEt 9:1) to afford **9k** (dr 98.5:1.5). White solid. **M.p.** 181-182°. $[\alpha]_D^{r.t.} = -99.6$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3508w, 3007w, 2967w, 1730s, 1600w, 1493w, 1450m, 1423m, 1047m, 1003m, 911w. **¹H-NMR** (300 MHz, CDCl_3): 0.85 (*d*, $J = 6.9$, 3 H, Me); 1.10 (*d*, $J = 7.2$, 3 H, Me); 1.38 (*s*, 3 H, SMe); 1.77 (*s*, 3 H, C=CMe); 2.00-2.14 (*m*, 1 H, Me_2CH); 3.70 (*d*, $J = 4.7$, 1 H, OH); 4.34 (*d*, $J = 10.0$, 1 H, CHSMe); 4.73 (*d*, $J = 2.2$, 1 H, NCH); 4.93-4.98 (*m*, 2 H, $\text{CH}(\text{OH})$, C=CH₂); 5.06-5.08 (*m*, 1 H, C=CH₂); 7.21-7.40 (*m*, 6 arom. H); 7.45-7.49 (*m*, 2 arom. H); 7.71-7.75 (*m*, 2 arom. H). **¹³C-NMR** (125 MHz, CDCl_3): 9.8, 15.9, 17.0, 22.0 (Me); 30.1, 65.2, 68.5, 74.2 (CH); 88.8 (C); 115.3 (CH₂); 125.4, 126.0, 127.7, 128.2, 128.3, 128.6 (CH); 138.6, 143.5, 144.1, 157.3 (C). **FAB-MS**: 412 (7, $[M+\text{H}]^+$), 364 (76, $[M-\text{SMe}]^+$), 320 (100, $[M-\text{SMe}-\text{CO}_2]^+$), 296 (18). **Anal.** calc. for $\text{C}_{24}\text{H}_{29}\text{NO}_3\text{S}$ (411.56): C 70.04, H 7.10, N 3.40; found: C 70.03, H 6.97, N 3.37.

(S)-3-((1S,2S)-2-Cyclopent-1-enyl-2-hydroxy-1-methylsulfanyl-ethyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (9l). Compound **3** (380 mg, 1.11 mmol) was treated with BuLi (0.89 mL, 1.34 mmol) and 1-cyclopentenecarboxaldehyde (139 μL , 1.44 mmol) according to *GP 2*. Purification of the crude product by FC pentane/AcOEt (10:1) yielded **9l** (409 mg, 84%) as a 86:14 mixture with its C(2)-OH epimer. For analytical purposes a sample was purified by FC (pentane/AcOEt 10:1) to afford **9l** (dr 98.5:1.5). White solid. **M.p.** 210-211°. $[\alpha]_D^{r.t.} = -108.5$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3468w, 3006w, 2963m, 2848w, 1729s, 1600w, 1493w, 1450m, 1424m, 1046m, 1002m. **¹H-NMR** (300 MHz, CDCl_3): 0.84 (*d*, $J = 6.9$, 3 H, Me); 1.09 (*d*, $J = 7.5$, 3 H, Me); 1.39 (*s*, 3 H, SMe); 1.82-1.93 (*m*, 2 H, $\text{CH}_2\text{CH}_2\text{CH}_2$); 2.00-2.12 (*m*, 1 H, Me_2CH); 2.21-2.50 (*m*, 4 H, CCH₂, CHCH₂); 3.81 (*d*, $J = 5.0$, 1 H, OH); 4.35 (*d*, $J = 9.7$, 1 H, CHSMe); 4.73 (*d*, $J = 1.9$, 1 H, NCH); 5.12 (*dd*, $J = 5.0, 9.7$, 1 H, $\text{CH}(\text{OH})$); 5.72-5.76 (*m*, 1 H, C=CH); 7.21-7.39 (*m*, 6 arom. H); 7.45-7.48 (*m*, 2 arom. H); 7.71-7.75 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, CDCl_3): 10.0, 15.8, 21.8

(Me); 23.0 (CH₂); 30.0 (CH); 30.5, 32.2 (CH₂); 65.7, 68.3, 69.7 (CH); 88.8 (C); 125.3, 126.0, 127.6, 128.1, 128.2, 128.5, 129.5 (CH); 138.6, 142.7, 144.0, 157.3 (C). **FAB-MS:** 420 (9, [M+H-H₂O]⁺), 390 (29, [M-SMe]⁺), 376 (18, [M+H-H₂O-CO₂]⁺), 346 (100, [M-SMe-CO₂]⁺), 296 (25). **Anal.** calc. for C₂₆H₃₁NO₃S (437.60): C 71.36, H 7.14, N 3.20; found: C 71.16, H 6.95, N 3.19.

(S)-3-((1*S*,2*S*)-2-Hydroxy-3-methyl-1-methylsulfanyl-butyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**9 m**) and (S)-3-((1*S*,2*R*)-2-Hydroxy-3-methyl-1-methylsulfanyl-butyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**10m**). Compound **3** (1.11 g, 3.25 mmol) was treated with BuLi (2.55 mL, 3.90 mmol) and isobutyraldehyde (384 μ L, 4.23 mmol) according to *GP 2*. Trituration of the crude product (boiling hexane, 2x 6 mL) yielded **9m** (1.13 g, 84%) as a 71:29 mixture with its C(2)-OH epimer **10m**. Alternatively, purification of the crude product by FC (pentane/Et₂O 10:1) yielded **9m** (61%) and **10m** (21%) as single diastereoisomers. **9m:** White solid. **M.p.** 217-218°. $[\alpha]_D^{r.t.} = -108.3$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3520w, 2964m, 2930w, 2875w, 1730s, 1493w, 1450m, 1423m, 1049w, 1002m. **¹H-NMR** (300 MHz, CDCl₃): 0.83 (*d*, *J* = 6.9, 6 H, Me); 1.01 (*d*, *J* = 6.9, 3 H, Me); 1.07 (*d*, *J* = 7.5, 3 H, Me); 1.35 (*s*, 3 H, SMe); 2.00-2.21 (*m*, 2 H, Me₂CH); 3.48 (*s*, 1 H, OH); 4.23-4.31 (*m*, 2 H, CHSMe, CH(OH)); 4.74 (*d*, *J* = 2.2, 1 H, NCH); 7.20-7.38 (*m*, 6 arom. H); 7.47-7.49 (*m*, 2 arom. H); 7.74-7.76 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, CDCl₃): 9.6, 14.1, 15.9, 20.7, 21.8 (Me); 29.1, 30.0, 65.4, 68.5, 73.2 (CH); 88.7 (C); 125.3, 126.0, 127.5, 128.1, 128.5 (CH); 138.6, 144.1, 157.4 (C). **FAB-MS:** 366 (7, [M-SMe]⁺), 322 (100, [M-SMe-CO₂]⁺). **Anal.** calc. for C₂₄H₃₁NO₃S (413.58): C 69.70, H 7.55, N 3.39; found: C 69.77, H 7.57, N 3.43.

10m: White solid. **M.p.** 204-205°. $[\alpha]_D^{r.t.} = -163.8$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3388w, 3007w, 2964m, 2874w, 1728s, 1466w, 1450m, 1425m, 1063w, 1002w, 908w. **¹H-NMR** (300 MHz,

CDCl_3): 0.76 (*d*, $J = 6.9$, 3 H, Me); 0.89 (*d*, $J = 6.9$, 3 H, Me); 1.00 (*d*, $J = 6.5$, 3 H, Me); 1.08 (*d*, $J = 7.2$, 3 H, Me); 1.58 (*s*, 3 H, SMe); 1.81-1.95 (*m*, 1 H, Me_2CH); 2.05-2.18 (*m*, 1 H, Me_2CH); 3.78-3.86 (*m*, 1 H, $\text{CH}(\text{OH})$); 4.40 (*d*, $J = 2.5$, 1 H, CHSMe); 4.60 (*d*, $J = 1.9$, 1 H, NCH); 4.72 (*d*, $J = 2.5$, 1 H, OH); 7.22-7.39 (*m*, 6 arom. H); 7.48-7.51 (*m*, 2 arom. H); 7.69-7.72 (*m*, 2 arom. H). **$^{13}\text{C-NMR}$** (75 MHz, CDCl_3): 13.1, 16.0, 18.4, 20.0, 21.6 (Me); 29.8, 31.3, 67.7, 71.2, 78.8 (CH); 89.0 (C); 125.1, 126.0, 127.7, 128.2, 128.3, 128.7 (CH); 138.4, 144.2, 157.6 (C). **FAB-MS**: 414 (8, $[M+\text{H}]^+$), 366 (67, $[M-\text{SMe}]^+$), 322 (100, $[M-\text{SMe}-\text{CO}_2]^+$). **Anal.** calc. for $\text{C}_{24}\text{H}_{31}\text{NO}_3\text{S}$ (413.58): C 69.70, H 7.55, N 3.39; found: C 69.66, H 7.55, N 3.46.

(S)-3-((1*S*,2*S*)-2-Hydroxy-1-methylsulfanyl-pentyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (9n). Compound **3** (388 mg, 1.14 mmol) was treated with BuLi (0.89 mL, 1.36 mmol) and butyraldehyde (133 μL , 1.48 mmol) according to *GP 2*. Trituration of the crude product (boiling hexane, 6 mL) yielded **9n** (391 mg, 83%) as a 70:30 mixture with its C(2)-OH epimer. For analytical purposes a sample was purified by FC (pentane/AcOEt 10:1) to afford **9n** as a single diastereoisomer. White solid. **M.p.** 171-173°. $[\alpha]_{\text{D}}^{\text{r.t.}} = -108.3$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3504*w*, 3007*w*, 2963*m*, 2873*w*, 1729*s*, 1493*w*, 1450*m*, 1423*m*, 1047*w*, 1002*w*, 854*w*. **$^1\text{H-NMR}$** (300 MHz, CDCl_3): 0.83 (*d*, $J = 6.5$, 3 H, Me); 0.91 (*t*, $J = 7.2$, 3 H, CH_2Me); 1.04 (*d*, $J = 7.5$, 3 H, Me); 1.32 (*s*, 3 H, SMe); 1.36-1.47 (*m*, 2 H, CH_2); 1.52-1.63 (*m*, 1 H, CH_2); 1.78-1.90 (*m*, 1 H, CH_2); 1.98-2.11 (*m*, 1 H, Me_2CH); 3.87 (*dd*, $J = 0.9, 5.0$, 1 H, OH); 4.08 (*d*, $J = 9.3$, 1 H, CHSMe); 4.30-4.40 (*m*, 1 H, $\text{CH}(\text{OH})$); 4.72 (*d*, $J = 2.2$, 1 H, NCH); 7.20-7.39 (*m*, 6 arom. H); 7.45-7.48 (*m*, 2 arom. H); 7.73-7.76 (*m*, 2 arom. H). **$^{13}\text{C-NMR}$** (75 MHz, CDCl_3): 9.6, 14.0, 15.9, 19.0 (Me); 21.9 (CH_2); 30.1 (CH); 36.8 (CH_2); 67.8, 68.5, 70.3 (CH); 88.9 (C); 125.3, 126.0, 127.6, 128.2, 128.3, 128.6 (CH); 138.6, 144.1, 157.5 (C). **FAB-MS**: 366 (26, $[M-\text{SMe}]^+$), 322 (100, $[M-\text{SMe}-\text{CO}_2]^+$). **Anal.** calc. for $\text{C}_{24}\text{H}_{31}\text{NO}_3\text{S}$ (413.58): C 69.70, H 7.55, N 3.39; found: C

69.43, H 7.67, N 3.37.

(S)-3-((1S,2S)-2-Hydroxy-1-methylsulfanyl-2-phenyl-propyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (11a). Compound **3** (605 mg, 1.77 mmol) was treated with BuLi (1.45 mL, 2.13 mmol) and a solution of acetophenone (269 μ L, 2.30 mmol) in THF (1 mL) according to *GP 2*. The crude product was triturated (boiling hexane, 2x 7 mL) and recrystallized (MeOH) to give **11a** (456 mg, 56%) as a single diastereoisomer. White solid. **M.p.** 204-206°. $[\alpha]_D^{r.t.} = -118.6$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3692w, 3314w, 3008m, 2936w, 1721s, 1601w, 1494w, 1450m, 1422m, 1372w, 1036w, 1003w. **¹H-NMR** (400 MHz, CDCl_3): 0.23 (*d*, $J = 7.1$, 3 H, Me); 0.51 (*d*, $J = 7.3$, 3 H, Me); 1.67 (*s*, 3 H, SMe); 1.73 (*d*, $J = 0.9$, 3 H, CMe); 1.80-1.92 (*m*, 1 H, Me_2CH); 4.45 (*s*, 1 H, CHSMe); 4.61 (*d*, $J = 1.9$, 1 H, NCH); 6.55 (*br s*, 1 H, OH); 7.13-7.34 (*m*, 11 arom. H); 7.45-7.48 (*m*, 2 arom. H); 7.58-7.61 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 13.0, 16.4, 18.3 (Me); 29.5 (CH); 31.2 (Me); 69.5, 71.6 (CH); 79.3, 89.1 (C); 125.19, 125.22, 126.6, 127.2, 127.6, 127.8, 128.1, 128.2, 128.6 (CH); 138.1, 144.1, 145.5, 158.3 (C). **FAB-MS**: 923 (5, $[2M+\text{H}]^+$), 462 (14, $[M+\text{H}]^+$), 444 (19, $[M+\text{H}-\text{H}_2\text{O}]^+$), 414 (100, $[M-\text{SMe}]^+$), 370 (65, $[M-\text{SMe}-\text{CO}_2]^+$), 296 (28). **Anal.** calc. for $\text{C}_{28}\text{H}_{31}\text{NO}_3\text{S}$ (461.62): C 72.85, H 6.77, N 3.03; found: C 72.78, H 6.86, N 3.16.

(S)-4-Isopropyl-5,5-diphenyl-3-((1S,2R)-3,3,3-trifluoro-2-hydroxy-1-methylsulfanyl-2-phenyl-propyl)-oxazolidin-2-one (11b). Compound **3** (443 mg, 1.30 mmol) was treated with BuLi (1.10 mL, 1.68 mmol) and phenyl trifluoromethyl ketone (265 μ L, 1.95 mmol) according to *GP 2*. The crude product was recrystallized (MeOH) to give **11b** (372 mg, 55%) as a single diastereoisomer. White solid. **M.p.** >240°. $[\alpha]_D^{r.t.} = -99.7$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3066w, 3007m, 1746s, 1685m, 1598w, 1494m, 1449w, 1410s, 1034m, 1003m. **¹H-NMR** (400 MHz, CDCl_3): 0.77 (*d*,

J = 7.0, 3 H, Me); 1.19 (*d*, *J* = 7.4, 3 H, Me); 1.46 (*s*, 3 H, SMe); 2.19-2.26 (*m*, 1 H, Me₂CH); 4.67 (*s*, 1 H, CHSMe); 4.81 (*d*, *J* = 1.8, 1 H, NCH); 7.25-7.43 (*m*, 12 arom. H); 7.62-7.64 (*m*, 2 arom. H); 8.24 (*s*, 1 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 14.3, 15.5, 20.7 (Me); 29.5, 68.5, 71.1 (CH); 80.8 (*q*, *J*_{C,F} = 27.7, CF₃); 90.2 (C); 125.5, 126.6, 128.0, 128.1, 128.3, 128.5, 128.62, 128.64 (CH); 137.4, 138.2, 143.7, 160.2 (C). **¹⁹F-NMR** (282 MHz, CDCl₃): -73.82 (*s*, 3 F, CF₃). **MALDI-MS**: 538 (100, [M+Na]⁺), 424 (60, [M-SMe-CO₂]⁺), 364 (47), 249 (89), 172 (65). **Anal.** calc. for C₂₈H₂₈F₃NO₃S (515.60): C 65.23, H 5.47, N 2.72, S 6.22; found: C 65.15, H 5.54, N 2.67, S 6.21

(S)-3-((1*S*,2*S*)-2-Hydroxy-3-methyl-1-methylsulfanyl-2-phenyl-butyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (11c). Compound **3** (500 mg, 1.46 mmol) was treated with BuLi (1.15 mL, 1.76 mmol) and isobutyrophenone (287 μ L, 1.93 mmol) according to *GP 2*. Trituration of the crude product (boiling MeOH, 2x 8 mL) yielded **11c** (610 mg, 85%) as a 77:23 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **11c** (dr \geq 99:1). White solid. **M.p.** 236-240°. $[\alpha]_D^{r.t.} = -110.6$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3621w, 3323w, 2985m, 2956m, 1728s, 1595w, 1492w, 1369w, 1328w, 1246m, 1051m, 1031w, 1000w. **¹H-NMR** (400 MHz, CDCl₃): 0.59 (*d*, *J* = 6.8, 3 H, Me); 0.68 (*d*, *J* = 7.3, 6 H, Me); 0.81 (*d*, *J* = 6.8, 3 H, Me); 2.14 (*br s*, 3 H, SMe); 2.49 (*br s*, 1 H, Me₂CH); 2.58-2.63 (*m*, 1 H, Me₂CH); 4.64 (*d*, *J* = 1.6, 1 H, NCH); 5.46 (*s*, 1 H, CHSMe); 6.94-7.40 (*m*, 15 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 16.7, 17.2, 18.2, 18.7 (Me); 29.0, 37.6, 68.1, 68.7 (CH); 83.1, 87.7 (C); 124.5, 125.2, 126.0, 127.1, 127.38, 127.42, 127.5, 127.8, 128.5 (CH); 138.7, 144.2, 157.7 (C). **MALDI-MS**: 512 (40, [M+Na]⁺), 260 (100), 237 (77). **Anal.** calc. for C₃₀H₃₅NO₃S (489.68): C 73.59, H 7.20, N 2.86; found: C 73.43, H 7.34, N 2.83.

(S)-3-((1S,2S)-2-Hydroxy-4-methyl-1-methylsulfanyl-2-phenyl-pentyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (11d). Compound **3** (1.00 g, 2.93 mmol) was treated with BuLi (2.20 mL, 3.51 mmol) and isovalerophenone (741 mg, 4.57 mmol) according to *GP 2*. Trituration of the crude product (hexane, 16 mL, boiling MeOH, 30 mL) yielded **11d** (1.08 g, 73%) as a single diastereoisomer. White solid. **M.p.** 221-223°. $[\alpha]_D^{r.t.} = -124.3$ ($c = 1$, CHCl₃). **IR** (CHCl₃): 3690w, 3322m, 3062w, 3008m, 2956s, 2869m, 1721s, 1601m, 1494m, 1450s, 1420s, 1310m, 1248m, 1133m, 1003s, 812w. **¹H-NMR** (400 MHz, CDCl₃): 0.32 (*d*, $J = 7.2$, 3 H, Me); 0.46 (*d*, $J = 7.2$, 3 H, Me); 0.58 (*d*, $J = 6.7$, 3 H, Me); 0.87 (*d*, $J = 6.6$, 3 H, Me); 1.31-1.38 (*m*, 1 H, Me₂CH); 1.61-1.66 (*m*, 1 H, CH₂); 1.70 (*s*, 3 H, SMe); 1.88-1.94 (*m*, 1 H, Me₂CH); 2.35-2.40 (*dd*, $J = 7.8$, 13.9, 1 H, CH₂); 4.43 (*s*, 1 H, CHSMe); 4.60 (*d*, $J = 2.0$, 1 H, NCH); 6.17 (*s*, 1 H, OH); 7.11-7.31 (*m*, 11 arom. H); 7.31-7.41 (*m*, 2 arom. H); 7.55-7.57 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 13.2, 17.0, 17.9, 23.8 (Me); 24.4 (CH); 24.6 (Me); 29.4 (CH); 50.7 (CH₂); 69.5, 72.3 (CH); 82.2, 88.9 (C); 125.2, 126.1, 126.8, 127.0, 127.5, 127.7, 127.9, 128.1, 128.5 (CH); 138.3, 143.5, 144.2, 158.2 (C). **MALDI-MS**: 526 (70, [M+Na]⁺), 412 (100, [M-SMe-CO₂]⁺), 260 (74), 237 (96). **Anal.** calc. for C₃₁H₃₇NO₃S (503.70): C 73.92, H 7.40, N 2.78; found: C 74.03, H 7.49, N 2.73.

(S)-3-[(S)-((S)-1-Hydroxy-4-methoxy-indan-1-yl)-methylsulfanyl-methyl]-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (11e). Compound **3** (337 mg, 0.987 mmol) was treated with BuLi (0.76 mL, 1.18 mmol) and a solution of 4-methoxy-1-indanone (208 mg, 1.28 mmol) in THF (1 mL) according to *GP 2*. Purification of the crude product by FC (pentane/Et₂O 3:1) yielded **11e** (320 mg, 64%) as a 97:3 mixture with 1st C(2)-OH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **11e** (dr \geq 99:1). White solid. **M.p.** > 126° (dec.). $[\alpha]_D^{r.t.} = -97.8$ ($c = 1$, CHCl₃). **IR** (CHCl₃): 3346w, 3006w, 2961w, 1723s, 1591w, 1483m, 1450m, 1422m,

1268*m*, 1066*w*, 1034*m*, 1003*w*. **¹H-NMR** (400 MHz, CDCl₃): 0.01 (*d*, *J* = 6.8, 3 H, Me); 0.61 (*d*, *J* = 7.3, 3 H, Me); 1.83 (*s*, 3 H, SMe); 1.89-2.01 (*m*, 1 H, Me₂CH); 2.13-2.23 (*m*, 1 H, CH₂); 2.45-2.54 (*m*, 1 H, CH₂); 2.63 (*br s*, 1 H, CH₂); 2.87-2.94 (*m*, 1 H, CH₂); 3.80 (*s*, 3 H, OMe); 4.22 (*s*, 1 H, CHSMe); 4.53 (*s*, 1 H, NCH); 6.08 (*br s*, 1 H, OH); 6.73 (*d*, *J* = 7.7, 1 arom. H); 7.17-7.38 (*m*, 10 arom. H); 7.59-7.61 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 14.8, 20.4 (Me); 25.3 (CH₂); 29.3 (CH); 39.9 (CH₂); 55.3 (Me); 69.4, 69.9 (CH); 87.8, 89.2 (C); 109.9, 116.8, 125.2, 126.3, 127.6, 127.9, 128.3, 128.4, 128.6 (CH); 130.3, 138.6, 144.0, 147.2, 155.8, 159.2 (C). **MALDI-MS**: 526 (85, [M+Na]⁺), 394 (100, [M-SMe-CO₂-H₂O]⁺), 248 (26). **Anal.** calc. for C₃₀H₃₃NO₄S (503.66): C 71.54, H 6.60, N 2.78, S 6.37; found: C 71.48, H 6.73, N 2.67, S 6.32.

(S)-3-[(1*S*,2*S*)-2-Hydroxy-2-(5-methyl-furan-2-yl)-1-methylsulfanyl-propyl]-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**11f**). Compound **3** (552 mg, 1.62 mmol) was treated with BuLi (1.27 mL, 1.94 mmol) and 2-acetyl-5-methylfuran (288 mg, 2.32 mmol) according to *GP 2*. Trituration of the crude product (boiling hexane, 2x 6 mL) yielded **11f** (542 mg, 76%) as a single diastereoisomer. White solid. **M.p.** 204-208°. $[\alpha]_D^{25} = -51.7$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3313*w*, 3005*m*, 1723*s*, 1440*m*, 1415*s*, 1369*m*, 1308*m*, 1133*m*, 1093*m*, 1092*m*, 1041*m*. **¹H-NMR** (400 MHz, CDCl₃): 0.28 (*d*, *J* = 6.9, 3 H, Me); 0.96 (*d*, *J* = 7.4, 3 H, Me); 1.58-1.62 (*m*, 6 H, Me); 1.94-2.00 (*m*, 1 H, Me₂CH); 2.19 (*d*, *J* = 0.8, 3 H, SMe); 4.44 (*s*, 1 H, CHSMe); 4.66 (*d*, *J* = 1.4, 1 H, NCH); 5.89-5.91 (*m*, 1 heteroarom. H); 6.31-6.32 (*m*, 1 heteroarom. H); 6.65 (*s*, 1 H, OH); 7.17-7.38 (*m*, 8 arom. H); 7.67-7.69 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 12.7, 13.5, 14.7, 19.8, 27.8 (Me); 29.5, 69.5, 70.5 (CH); 76.7, 89.4 (C); 106.6, 107.2, 125.3, 126.2, 127.6, 128.0, 128.3, 128.6 (CH); 138.4, 144.2, 150.3, 155.9, 158.3 (C). **MALDI-MS**: 488 (100, [M+Na]⁺), 356 (20, [M-SMe-CO₂-H₂O]⁺), 260 (18), 167 (23). **Anal.** calc. for C₂₇H₃₁NO₄S (465.61): C 69.65, H 6.71, N 3.01; found: C 69.55, H 6.80, N 2.95.

(S)-3-((1S,2S)-2-Hydroxy-4-methyl-1-methylsulfanyl-2-pyridin-4-yl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (11g). Compound **3** (600 mg, 1.75 mmol) was treated with BuLi (1.40 mL, 2.11 mmol) and 4-propionylpyridine (356 mg, 2.53 mmol) according to *GP 2*. Trituration of the crude product (hexane, 10 mL, boiling MeOH, 12 mL) yielded **11g** (493 mg, 59%) as a 98:2 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **11g** as a single diastereoisomer. White solid. **M.p.** 209-211°. $[\alpha]_D^{r.t.} = -113.1$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3323w, 2974w, 1723s, 1595w, 1492w, 1446m, 1323w, 1174w, 1000m, 820m. **¹H-NMR** (400 MHz, CDCl_3): 0.40 (*d*, $J = 7.2$, 3 H, Me); 0.55-0.63 (*m*, 6 H, Me); 1.68-1.75 (*m*, 1 H, CH_2); 1.77 (*s*, 3 H, SMe); 1.98-2.05 (*m*, 1 H, Me_2CH); 2.45-2.53 (*m*, 1 H, CH_2); 4.56 (*s*, 1 H, CHSMe); 4.64 (*d*, $J = 2.1$, 1 H, NCH); 6.05 (*br s*, 1 H, OH); 7.15-7.22 (*m*, 3 arom. H); 7.26-7.32 (*m*, 7 arom. H); 7.48-7.53 (*m*, 2 arom. H); 8.43-8.48 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 7.7, 13.6, 17.3, 18.1 (Me); 29.5 (CH); 35.3 (CH_2); 69.3, 70.7 (CH); 81.3, 89.0 (C); 121.3, 125.0, 126.7, 127.7, 127.8, 128.3, 128.6 (CH); 137.9, 143.9 (C); 149.5 (CH); 152.2, 158.3 (C). **MALDI-MS:** 500 (9, $[M+\text{Na}]^+$), 477 (18, $[\text{M}]^+$), 340 (39), 297 (20), 296 (100). **Anal.** calc. for $\text{C}_{28}\text{H}_{32}\text{N}_2\text{O}_3\text{S}$ (476.64): C 70.56, H 6.77, N 5.88; found: C 74.50, H 6.79, N 6.00.

(S)-3-[(S)-((S)-2-Benzylidene-1-hydroxy-1,2,3,4-tetrahydro-naphthalen-1-yl)-methylsulfanyl-methyl]-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (11h). Compound **3** (375 mg, 1.10 mmol) was treated with BuLi (0.85 mL, 1.32 mmol) and a solution of 2-benzylidene-1-tetralone (334 mg, 1.43 mmol) in THF (1 mL) according to *GP 2*. Purification of the crude product by FC (pentane/Et₂O 5:1) and subsequent trituration (boiling hexane, 5 mL) yielded **11h** (158 mg, 25%) as a single diastereoisomer. White solid. **M.p.** 236-237°. $[\alpha]_D^{r.t.} = -64.3$ ($c = 0.965$, CHCl_3). **IR** (CHCl_3): 3278w, 3067w, 3008m, 1718s, 1599w, 1492w, 1450m, 1422m, 1286w, 1131w, 1003w.

¹H-NMR (400 MHz, CDCl₃): -0.03 (d, *J* = 7.0, 3 H, Me); 0.54 (d, *J* = 7.3, 3 H, Me); 1.73-1.82 (m, 1 H, Me₂CH); 1.87 (s, 3 H, SMe); 2.40-2.49 (m, 1 H, CH₂); 2.88-3.03 (m, 2 H, CH₂); 3.08-3.16 (m, 1 H, CH₂); 4.47 (s, 1 H, CHSMe); 4.60 (d, *J* = 1.7, 1 H, NCH); 6.96-6.99 (m, 1 H); 7.11-7.39 (m, 16 H); 7.57-7.62 (m, 2 H); 7.85-7.88 (m, 1 H); 7.95 (br s, 1 H, OH). **¹³C-NMR** (100 MHz, CDCl₃): 14.9, 15.1, 20.0 (Me); 23.4 (CH₂); 29.06 (CH); 29.09 (CH₂); 70.2, 71.3 (CH); 79.6, 89.5 (C); 125.5, 126.3, 126.4, 126.6, 126.65, 126.67, 127.78, 127.83, 127.9, 128.0, 128.2, 128.4, 128.6, 129.1 (CH); 135.1, 138.4, 138.5, 141.4, 143.7, 160.2 (C). **MALDI-MS**: 598 (10, [M+Na]⁺), 558 (10, [M+H-H₂O]⁺), 466 (100, [M-SMe-CO₂-H₂O]⁺), 424 (27). **Anal.** calc. for C₃₇H₃₇NO₃S (575.77): C 77.18, H 6.48, N 2.43; found: C 77.06, H 6.63, N 2.52.

(S)-3-[(S)-1-((S)-1-Hydroxy-cyclohex-2-enyl)-1-methylsulfanyl-methyl]-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**11i**). Compound **3** (700 mg, 2.05 mmol) was treated with BuLi (1.61 mL, 2.46 mmol) and 2-cyclohexen-1-one (257 μ L, 2.67 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/Et₂O 6:1) yielded **11i** (454 mg, 51%) as a 83:17 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **11i** (dr \geq 99:1). White solid. **M.p.** 176-178°. $[\alpha]_D^{25} = -113.2$ (*c* = 0.5, CHCl₃). **IR** (CHCl₃): 3680w, 3380w, 3007m, 2934m, 1725s, 1599w, 1493w, 1450m, 1422s, 1305w, 1248m, 1153w, 1086w, 1046m, 1003m, 908m. **¹H-NMR** (400 MHz, CDCl₃): 0.74 (d, *J* = 6.8, 3 H, Me); 1.03 (d, *J* = 7.3, 3 H, Me); 1.35-1.45 (m, 1 H); 1.63 (s, 3 H, SMe); 1.76-1.83 (m, 2 H); 1.92-2.10 (m, 3 H); 2.10-2.20 (m, 1 H, Me₂CH); 4.27 (s, 1 H, CHSMe); 4.73 (d, *J* = 2.0, 1 H, NCH); 5.29 (s, 1 H, OH); 5.77-5.81 (m, 1 H, CH₂CH); 5.94 (d, *J* = 10.4, 1 H, CCH); 7.21-7.39 (m, 6 arom. H); 7.46-7.49 (m, 2 arom. H); 7.70-7.73 (m, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 13.6, 15.8 (Me); 19.5 (CH₂); 21.0 (Me); 25.1 (CH₂); 30.2 (CH); 34.2 (CH₂); 70.2, 71.4 (CH); 73.8, 89.2 (C); 125.2, 126.2, 127.6, 128.1, 128.3, 128.7, 129.9, 131.4 (CH); 138.7, 144.3, 158.5 (C). **MALDI-MS**: 460

(42, $[M+\text{Na}]^+$), 444 (100, $[M+\text{Li}]^+$), 328 (41, $[M-\text{SMe}-\text{CO}_2-\text{H}_2\text{O}]^+$), 244 (46), 167 (36). **Anal.** calc. for $\text{C}_{26}\text{H}_{31}\text{NO}_3\text{S}$ (437.60): C 71.36, H 7.14, N 3.20; found: C 71.15, H 6.96, N 3.22.

(S)-3-((1S,2S)-2-Hydroxy-2-methyl-1-methylsulfanyl-but-3-enyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (11j). Compound **3** (481 mg, 1.41 mmol) was treated with BuLi (1.13 mL, 1.69 mmol) and methyl vinyl ketone (150 μL , 1.83 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/Et₂O 2:1) and recrystallization (MeOH) afforded **11j** as a 98.5:1.5 mixture with its C(2)-OH epimer. Due to purification problems only small amounts of product could be isolated. White solid. **M.p.** 154-156°. $[\alpha]_{\text{D}}^{\text{r.t.}} = -136.1$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3360w, 3008m, 1727s, 1601w, 1493m, 1450m, 1419s, 1368m, 1336m, 1248m, 1131m, 1003w, 926m. **¹H-NMR** (400 MHz, CDCl_3): 0.74 (*d*, $J = 6.9$, 3 H, Me); 1.06 (*d*, $J = 7.4$, 3 H, Me); 1.41-1.42 (*m*, 3 H, Me); 1.62 (*s*, 3 H, SMe); 2.11-2.16 (*m*, 1 H, Me_2CH); 4.12 (*s*, 1 H, CHSMe); 4.72 (*d*, $J = 1.8$, 1 H, NCH); 5.11 (*dd*, $J = 1.1$, 10.7, 1 H, CH_2CH); 5.46 (*dd*, $J = 1.1$, 17.1, 1 H, CH_2CH); 5.60 (*s*, 1 H, OH); 6.04 (*dd*, $J = 10.7$, 17.1, 1 H, CH_2CH); 7.20-7.48 (*m*, 8 arom. H); 7.68-7.70 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 13.2, 16.0, 20.9, 28.0 (Me); 30.1, 69.8, 71.2 (CH); 77.6, 89.2 (C); 113.7 (CH_2); 125.3, 126.3, 127.7, 128.1, 128.3, 128.6 (CH); 138.5, 142.6, 144.2, 158.2 (C). **MALDI-MS**: 434 (100, $[M+\text{Na}]^+$), 320 (31, $[M-\text{SMe}-\text{CO}_2]^+$), 302 (44, $[M-\text{SMe}-\text{CO}_2-\text{H}_2\text{O}]^+$), 260 (87), 237 (52). **Anal.** calc. for $\text{C}_{24}\text{H}_{29}\text{NO}_3\text{S}$ (411.56): C 70.04, H 7.10, N 3.40; found: C 69.92, H 6.96, N 3.36.

(S)-3-((1S,2S)-2-Cyclopropyl-2-hydroxy-1-methylsulfanyl-propyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (11k). Compound **3** (807 mg, 2.36 mmol) was treated with BuLi (1.85 mL, 2.83 mmol) and cyclopropyl methyl ketone (287 μL , 3.07 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/Et₂O 6:1) afforded **11k** as a single diastereoisomer. Due to

purification problems only small amounts of product could be isolated. White solid. **M.p.** 118-122°. $[\alpha]_D^{r.t.} = -135.4$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3364w, 2995m, 1723s, 1415m, 1308m, 1250m, 1133m, 1086w, 926m. **¹H-NMR** (400MHz, CDCl_3): 0.31-0.36 (m , 2 H); 0.41-0.48 (m , 1 H); 0.71-0.75 (m , 1 H); 0.76 (d , $J = 6.9$, 3 H, Me); 1.03-1.19 (m , 1 H); 1.11 (d , $J = 7.4$, 3 H, Me); 1.20 (d , $J = 0.8$, 3 H, Me); 1.71 (s , 3 H, SMe); 2.18-2.27 (m , 1 H, Me_2CH); 4.18 (s , 1 H, CHSMe); 4.82 (d , $J = 1.8$, 1 H, NCH); 4.94 (s , 1 H, OH); 7.20-7.40 (m , 6 arom. H); 7.45-7.50 (m , 2 arom. H); 7.68-7.72 (m , 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 1.9, 2.4 (CH_2); 13.8, 16.1 (Me); 20.2 (CH); 20.8, 25.3 (Me); 29.9, 70.2, 72.8 (CH); 76.2, 89.1 (C); 125.3, 126.4, 127.7, 128.1, 128.3, 128.6 (CH); 138.6, 144.3, 158.7 (C). **MALDI-MS**: 448 (41, $[M + \text{Na}]^+$), 316 (42, $[M - \text{SMe} - \text{CO}_2 - \text{H}_2\text{O}]^+$), 274 (63), 260 (100). **Anal.** calc. for $\text{C}_{25}\text{H}_{31}\text{NO}_3\text{S}$ (425.59): C 70.55, H 7.34, N 3.29; found: C 70.69, H 7.40, N 3.33.

(S)-4-Isopropyl-3-((1S,2R)-2-methyl-1-methylsulfanyl-4-oxo-2,4-diphenyl-butyl)-5,5-diphenyl-oxazolidin-2-one (13). Compound **3** (350 mg, 1.02 mmol) was treated with BuLi (0.79 mL, 1.23 mmol) and benzalacetophenone (277 mg, 1.33 mmol) according to GP 2. Purification of the crude product by FC (CH_2Cl_2 /pentane 3:1 to $\text{CH}_2\text{Cl}_2 + 1\%$ Et_2O) yielded **13** (441 mg, 79%) as a 98:2 mixture with its C(2)-Ph epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **13** ($\text{dr} \geq 99:1$). White solid. **M.p.** 224-226°. $[\alpha]_D^{r.t.} = -99.8$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3005m, 2954w, 1744s, 1682m, 1595w, 1487m, 1446m, 1405m, 1179m, 1092w. **¹H-NMR** (400 MHz, CD_2Cl_2): 0.24 (d , $J = 6.9$, 3 H, Me); 0.83 (d , $J = 7.4$, 3 H, Me); 1.72 (s , 3 H, SMe); 1.89-1.97 (m , 1 H, Me_2CH); 3.25 (dd , $J = 7.8, 17.1$, 1 H, CH_2); 3.86 (dd , $J = 4.8, 17.1$, 1 H, CH_2); 4.49 (d , $J = 1.7$, 1 H, NCH); 4.72 (d , $J = 10.9$, 1 H, CHSMe); 4.80 (ddd , $J = 4.8, 7.8, 10.9$, 1 H, CHPh); 7.04-7.54 (m , 18 arom. H); 7.82-7.85 (m , 2 arom. H). **¹³C-NMR** (100 MHz, CD_2Cl_2): 13.1, 15.6, 20.6, 30.0 (Me); 42.2 (CH); 45.4 (CH_2); 68.9, 69.1 (CH); 87.8 (C); 125.5,

126.9, 127.7, 127.8, 128.2, 128.3, 128.7, 128.8, 128.86, 128.90, 133.2 (CH); 137.8, 139.6, 142.1, 145.0, 157.1, 197.6 (C). **MALDI-MS:** 572 (100, $[M+\text{Na}]^+$), 440 (38, $[M-\text{SMe}-\text{CO}_2-\text{H}_2\text{O}]^+$), 336 (32), 291 (50), 248 (56). **Anal.** calc. for $\text{C}_{35}\text{H}_{35}\text{NO}_3\text{S}$ (549.73): C 76.47, H 6.42, N 2.56, S 5.83; found: C 76.35, H 6.47, N 2.49, S 5.85.

N-[(1*S*,2*S*)-2-((*S*)-4-*Isopropyl*-2-*oxo*-5,5-*diphenyl*-oxazolidin-3-*yl*)-2-*methylsulfanyl*-1-*phenyl*-*ethyl*]-*diphenylphosphinamide* (14a**).** Compound **3** (257 mg, 0.753 mmol) was treated with BuLi (0.60 mL, 0.903 mmol) and a solution of *N*-*diphenylphosphinoylimine* (derived from benzaldehyde) [2] (299 mg, 0.978 mmol) in THF (1 mL) according to *GP 2*. Trituration of the crude product (boiling MeOH, 2x 5 mL) yielded **14a** (214 mg, 44%) as a 97:3 mixture with its C(1)-NH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **14a** (dr \geq 99:1). White solid. **M.p.** $>240^\circ$. $[\alpha]_{\text{D}}^{\text{r.t.}} = -86.5$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3319w, 3063w, 2986m, 1736s, 1592w, 1493w, 1451m, 1438m, 1420m, 1124m, 1003w. **¹H-NMR** (400 MHz, CDCl_3): 0.33 (*d*, $J = 6.9$, 3 H, Me); 0.87 (*d*, $J = 7.3$, 3 H, Me); 1.67 (*s*, 3 H, SMe); 1.90-2.01 (*m*, 1 H, Me_2CH); 4.61 (*d*, $J = 8.0$, 1 H, CHSMe); 4.79-4.87 (*m*, 2 H, NCH, CH(NH)) (H,P-coupling); 5.33 (*br s*, 1 H, NH); 7.08-7.48 (*m*, 19 arom. H); 7.57-7.68 (*m*, 4 arom. H); 7.75-7.85 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 14.6, 15.4, 20.6 (Me); 29.5, 58.8, 69.2 (*d*, $J_{\text{C},\text{P}} = 6.9$), 69.4 (CH); 88.7 (C); 125.4, 126.4, 127.6, 127.7, 127.89, 127.93, 128.0, 128.1, 128.25, 128.31, 128.4, 128.5, 131.18, 131.20, 131.56, 131.58, 131.8, 131.9, 132.0, 132.1 (CH) (C,P-coupling); 132.3, 133.2, 133.6, 138.8, 140.2, 143.9, 157.8 (C) (C,P-coupling). **³¹P-NMR** (162 MHz, CDCl_3): 21.66. **MALDI-MS:** 669 (42, $[M+\text{Na}]^+$), 599 (39, $[M-\text{SMe}]^+$), 581 (12, $[M-\text{SMe}-\text{H}_2\text{O}]^+$), 555 (65, $[M-\text{SMe}-\text{CO}_2]^+$), 338 (100). **Anal.** calc. for $\text{C}_{39}\text{H}_{39}\text{N}_2\text{O}_3\text{PS}$ (646.79): C 72.42, H 6.08, N 4.33, S 4.96; found: C 72.45, H 6.22, N 4.27, S 5.14.

*N-[(1*S*,2*S*)-2-((*S*)-4-*Isopropyl*-2-*oxo*-5,5-*diphenyl*-oxazolidin-3-*yl*)-2-*methylsulfanyl*-1-*phenyl*-*ethyl*]-4-*methyl*-benzenesulfonamide (**14b**).* Compound **3** (326 mg, 0.955 mmol) was treated with BuLi (0.76 mL, 1.15 mmol) and a solution of *N*-tolylsulfonylimine (derived from benzaldehyde) [3] (322 mg, 1.24 mmol) in THF (1 mL) according to *GP 2*. Trituration of the crude product (boiling MeOH, 2x 6 mL) yielded **14b** (385 mg, 67%) as a 75:25 mixture with its C(1)-NH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **14b** (dr 95:5). White solid. **M.p.** >240°. $[\alpha]_D^{r.t.} = -69.0$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3278*w*, 3062*w*, 3008*w*, 1737*s*, 1599*w*, 1494*w*, 1451*m*, 1421*m*, 1331*m*, 1159*s*, 1093*m*, 1003*w*. **¹H-NMR** (400 MHz, CDCl₃): 0.21 (*d*, *J* = 6.9, 3 H, Me); 0.75 (*d*, *J* = 7.3, 3 H, Me); 1.62 (*s*, 3 H, SMe); 1.82-1.89 (*m*, 1 H, Me₂CH); 2.27 (*s*, 3 H; Me); 4.51 (*d*, *J* = 7.5, 1 H, CHSMe); 4.67 (*d*, *J* = 1.5, 1 H, NCH); 5.03 (*dd*, *J* = 7.5, 9.0, 1 H, CH(NH)); 6.93-6.96 (*m*, 2 arom. H); 7.00-7.39 (*m*, 15 arom. H, NH); 7.64-7.67 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 14.0, 15.1, 20.5, 21.4 (Me); 29.5, 62.1, 67.2, 69.2 (CH); 89.0 (C); 125.4, 126.2, 126.9, 127.6, 127.80, 127.83, 128.0, 128.2, 128.3, 128.8, 128.9 (CH); 137.0, 138.0, 138.5, 142.5, 143.8, 157.6 (C). **MALDI-MS**: 639 (2, [M+K]⁺), 623 (100, [M+Na]⁺), 575 (5). **Anal.** calc. for C₃₄H₃₆N₂O₄S₂ (600.80): C 67.97, H 6.04, N 4.66, S 10.67; found: C 67.89, H 6.09, N 4.66, S 10.73.

*N-[(1*S*,2*S*)-2-((*S*)-4-*Isopropyl*-2-*oxo*-5,5-*diphenyl*-oxazolidin-3-*yl*)-2-*methylsulfanyl*-1-*phenyl*-*ethyl*]-2,4,6-*trimethyl*-benzenesulfonamide (**14c**).* Compound **3** (341 mg, 0.999 mmol) was treated with BuLi (0.80 mL, 1.20 mmol) and a solution of *N*-mesitylsulfonylimine (derived from benzaldehyde) [3] (374 mg, 1.30 mmol) in THF (1 mL) according to *GP 2*. Trituration of the crude product (boiling MeOH, 2x 6 mL) yielded **14c** (390 mg, 62%) as a 95:5 mixture with its C(1)-NH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **14c** (dr ≥ 99:1). White solid. **M.p.** >240°. $[\alpha]_D^{r.t.} = -69.4$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3270*w*, 3011*w*,

1736s, 1604w, 1494w, 1451m, 1422m, 1328m, 1157s, 1003w. **1H-NMR** (400 MHz, CDCl_3): 0.21 (d, $J = 6.9$, 3 H, Me); 0.73 (d, $J = 7.3$, 3 H, Me); 1.69 (s, 3 H, SMe); 1.80-1.89 (m, 1 H, Me_2CH); 2.14 (s, 3 H, Me); 2.43 (s, 6 H, Me); 4.52 (d, $J = 7.5$, 1 H, CHSMe); 4.67 (d, $J = 1.6$, 1 H, NCH); 5.03 (dd, $J = 7.5$, 8.5, 1 H, $\text{CH}(\text{NH})$); 6.62 (d, $J = 0.5$, 2 arom. H); 6.95-7.06 (m, 5 H); 7.16-7.31 (m, 5 H); 7.35-7.41 (m, 4 H); 7.65-7.68 (m, 2 H). **13C-NMR** (100 MHz, CDCl_3): 14.4, 15.0, 20.4, 22.8 (Me); 29.5, 61.8, 67.3, 69.4 (CH); 89.0 (C); 125.3, 126.2, 127.4, 127.6, 127.7, 127.9, 128.0, 128.3, 128.8, 131.4 (CH); 135.4, 136.9, 138.0, 138.5, 141.3, 143.7, 157.7 (C). **MALDI-MS**: 651 (100, $[M+\text{Na}]^+$), 603 (3), 537 (6, $[M-\text{SMe}-\text{CO}_2]^+$), 370 (36). **Anal.** calc. for $\text{C}_{36}\text{H}_{40}\text{N}_2\text{O}_4\text{S}_2$ (628.86): C 68.76, H 6.41, N 4.45, S 10.20; found: C 68.83, H 6.32, N 4.48, S 10.19.

N-((1R,2S)-2-((S)-4-Isopropyl-2-oxo-5,5-diphenyl-oxazolidin-3-yl)-2-methylsulfanyl-1-isopropyl-ethyl}-2,4,6-trimethyl-benzenesulfonamide (15d). Compound 3 (335 mg, 0.981 mmol) was treated with BuLi (0.79 mL, 1.18 mmol) and a solution of *N*-mesitylsulfonylimine (derived from isobutyraldehyde) [3] (323 mg, 1.28 mmol) in THF (1 mL) according to *GP 2*. Purification of the crude product by FC (pentane/Et₂O 3:1) yielded 15d (251 mg, 43%) as a 97:3 mixture with its C(1)-NH epimer and 5 mol% of inseparable unidentified side products. For analytical purposes a sample was recrystallized (MeOH) to afford 15d (dr \geq 99:1). White solid. **M.p.** 196-198°. $[\alpha]_{\text{D}}^{\text{r.t.}} = -120.2$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3370w, 3009m, 2976w, 1745s, 1604w, 1493w, 1450w, 1408m, 1336m, 1264m, 1158m, 1034w, 657m. **1H-NMR** (400 MHz, CDCl_3): 0.29 (d, $J = 6.9$, 3 H, Me); 0.48 (d, $J = 6.9$, 3 H, Me); 0.78 (d, $J = 7.0$, 3 H, Me); 1.12-1.21 (m, 1 H, Me_2CH); 1.19 (d, $J = 7.3$, 3 H, Me); 2.17 (s, 3 H, SMe); 2.29 (s, 3 H, Me); 2.29-2.36 (m, 1 H, Me_2CH); 2.68 (s, 6 H, Me); 3.55-3.62 (m, 1 H, $\text{CH}(\text{NH})$); 4.85 (d, $J = 4.5$, 1 H, CHSMe); 4.92 (d, $J = 1.8$, 1 H, NCH); 4.96 (d, $J = 9.9$, 1 H, NH); 6.94 (d, $J = 0.5$, 2 arom. H); 7.20-7.38 (m, 6 arom. H); 7.52-7.56 (m, 2 arom. H); 7.75-7.78 (m, 2 arom. H). **13C-NMR** (100 MHz, CDCl_3): 15.2, 16.9, 17.1,

17.7, 19.7, 20.9, 23.1 (Me); 29.7 30.9, 60.3, 64.3, 67.7 (CH); 89.2 (C); 125.1, 126.4, 127.6, 128.06, 128.08, 128.7, 132.0 (CH); 136.5, 137.8, 138.3, 141.9, 144.8, 157.3 (C). **MALDI-MS:** 617 (100, $[M+Na]^+$), 569 (11), 503 (46, $[M-SMe-CO_2]^+$), 248 (62). **Anal.** calc. for $C_{33}H_{42}N_2O_4S_2$ (594.84): C 66.63, H 7.12, N 4.71, S 10.78; found: C 66.76, H 7.11, N 4.82, S 10.74.

(S)-4-Isopropyl-3-((1*S*,2*S*)-2-methoxymethoxy-1-methylsulfanyl-2-phenyl-ethyl)-5,5-diphenyl-oxazolidin-2-one (16). To a solution of compound **3** (500 mg, 1.46 mmol) in THF (8 mL) was added BuLi (1.20 mL, 1.76 mmol) at -78° . After stirring for 15 min, the reaction mixture was cooled to -100° and benzaldehyde (192 μ L, 1.90 mmol) was added dropwise. It was allowed to warm to -78° within 20 min and then MOMCl (189 μ L, 2.49 mmol) was added. After stirring for 4 h at r.t., the white precipitate that developed in the course of the reaction was dissolved in CH_2Cl_2 and the reaction was stopped by quenching with sat. aq. NH_4Cl soln. The org. layer was separated and the aq. layer was extracted with CH_2Cl_2 (2x). The combined org. layers were dried ($MgSO_4$) and concentrated under reduced pressure. The crude product was triturated (boiling hexane, 2x 5 mL) and recrystallized ($MeOH/CH_2Cl_2$) to give **16** (557 mg, 77%) as a 98.5:1.5 mixture with its C(2)-OH epimer. White solid. **M.p.** 201-203°. $[\alpha]_D^{r.t.} = -60.6$ ($c = 1, CHCl_3$). **IR** ($CHCl_3$): 3008w, 1750s, 1450w, 1419m, 1101w, 1022m, 909w. **¹H-NMR** (300 MHz, $CDCl_3$): 0.87 (*d*, $J = 6.9$, 3 H, Me); 1.25 (*d*, $J = 7.2$, 3 H, Me); 1.44 (*s*, 3 H, SMe); 2.13-2.23 (*m*, 1 H, Me_2CH); 3.21 (*s*, 3 H, OMe); 4.43 (*d*, $J = 10.6$, 1 H, $CHSMe$); 4.48 (*d*, $J = 6.4$, 1 H, CH_2); 4.63 (*d*, $J = 1.9$, 1 H, NCH); 4.70 (*d*, $J = 6.4$, 1 H, CH_2); 5.60 (*d*, $J = 10.6$, 1 H, CHO); 7.21-7.36 (*m*, 11 arom. H); 7.49-7.52 (*m*, 2 arom. H); 7.69-7.72 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, $CDCl_3$): 12.9, 15.1, 21.6 (Me); 30.1 (CH); 56.1 (Me); 67.9, 69.4, 78.1 (CH); 88.0 (C); 95.6 (CH_2); 125.4, 126.2, 127.4, 127.9, 127.96, 127.99, 128.2, 128.3, 128.4 (CH); 139.2, 139.8, 144.6, 156.4 (C). **FAB-MS:** 492 (7, $[M+H]^+$), 444 (100, $[M-SMe]^+$), 400 (36, $[M-SMe-CO_2]^+$), 340 (16), 296 (32).

Anal. calc. for $C_{29}H_{33}NO_4S$ (491.65): C 70.85, H 6.77, N 2.85; found: C 70.63, H 6.81, N 2.85.

(S)-3-((1*S*,2*S*)-2-Benzyloxy-3-methyl-1-methylsulfanyl-but-3-enyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**17**). To a solution of compound **3** (1.58 g, 4.62 mmol) in THF (20 mL) was added BuLi (3.77 mL, 5.55 mmol) at -78° . After stirring for 15 min, the reaction mixture was cooled to -100° and methacrolein (493 μ L, 6.01 mmol) was added dropwise. It was allowed to warm to -78° within 20 min and then BnBr (933 μ L, 7.85 mmol) and DMPU (2 mL) were added. After stirring for 5 h at r.t., the reaction was stopped by quenching with sat. aq. NH_4Cl soln. The org. layer was separated and the aq. layer was extracted with CH_2Cl_2 (2x). The combined org. layers were dried ($MgSO_4$) and concentrated under reduced pressure. The crude product was filtered through a silica plug (pentane/Et₂O 5:1) and triturated (boiling hexane, 3x 10 mL) to give **17** (1.27 g, 55%) as a single diastereoisomer. White solid. **M.p.** 193-195°. $[\alpha]_D^{r.t.} = -104.1$ ($c = 1$, $CHCl_3$). **IR** ($CHCl_3$): 3067w, 3005w, 1748s, 1647w, 1495w, 1450m, 1419m, 1067m, 1047m, 1003w, 912w. **¹H-NMR** (400 MHz, $CDCl_3$): 0.62 (*d*, $J = 6.8$, 3 H, Me); 1.03 (*d*, $J = 7.3$, 3 H, Me); 1.59 (*s*, 3 H, SMe); 1.68 (*d*, $J = 0.5$, 3 H, C=CMe); 2.01-2.13 (*m*, 1 H, Me_2CH); 4.39-4.49 (*m*, 3 H, $PhCH_2$, CHSMe); 4.56 (*d*, $J = 1.9$, 1 H, NCH); 5.05-5.06 (*m*, 1 H, C=CH₂); 5.10 (*d*, $J = 10.0$, 1 H, CHO); 5.13 (*s*, 1 H, C=CH₂); 7.17-7.33 (*m*, 11 arom. H); 7.43-7.46 (*m*, 2 arom. H); 7.67-7.70 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, $CDCl_3$): 11.4, 15.2, 16.2, 21.2 (Me); 30.0, 63.4, 69.1 (CH); 71.2 (CH₂); 81.9 (CH); 87.7 (C); 117.1 (CH₂); 125.4, 126.3, 127.2, 127.4, 127.95, 127.98, 128.1, 128.4 (CH); 138.5, 139.1, 141.3, 144.7, 156.5 (C). **FAB-MS**: 502 (13, $[M+H]^+$), 454 (100, $[M-SMe]^+$), 410 (51, $[M-SMe-CO_2]^+$), 350 (33). **Anal.** calc. for $C_{31}H_{35}NO_3S$ (501.69): C 74.22, H 7.03, N 2.79; found: C 74.20, H 7.16, N 2.87.

(S)-3-[(1*S*,2*S*)-2-(tert-Butyl-dimethyl-silyloxy)-3-methyl-1-methylsulfanyl-butyl]-4-isopropyl-

5,5-diphenyl-oxazolidin-2-one (18). To a solution of compound **9m** (503 mg, 1.22 mmol) in CH_2Cl_2 (3 mL) was added *iPr*₂NEt (563 μL , 3.29 mmol) and 3-(*tert*-butyl-dimethyl-silanyloxy)triflate (560 μL , 2.44 mmol) at 0°. After stirring for 10 min at 0°, the reaction mixture was quenched with MeOH (2 mL) and concentrated under reduced pressure. The crude product was purified by FC (pentane/Et₂O 15:1 to 10:1) to yield **18** (560 mg, 87%). White foam. $[\alpha]_{\text{D}}^{\text{r.t.}} = -163.0$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 2964*m*, 2931*m*, 2859*w*, 1741*s*, 1492*w*, 1472*w*, 1408*m*, 1077*m*, 834*m*. **¹H-NMR** (300 MHz, C_6D_6 , 50°): 0.16 (*s*, 3 H, Me_2Si); 0.40 (*s*, 3 H, Me_2Si); 0.61 (*d*, $J = 6.5$, 3 H, Me); 0.72 (*d*, $J = 6.5$, 3 H, Me); 0.81 (*d*, $J = 7.5$, 3 H, Me); 1.02-1.08 (*m*, 1 H, Me_2CH); 1.03 (*d*, $J = 6.9$, 3 H, Me); 1.09 (*s*, 9 H, *tBu*); 2.12 (*s*, 3 H, SMe); 2.91-3.03 (*m*, 1 H, Me_2CH); 3.92-3.99 (*m*, 1 H, CHO); 5.05 (*d*, $J = 3.7$, 1 H, NCH); 5.20 (*d*, $J = 3.1$, 1 H, CHSMe); 6.90-7.02 (*m*, 4 arom. H); 7.06-7.11 (*m*, 2 arom. H); 7.60-7.63 (*m*, 2 arom. H); 7.75-7.78 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): -4.8, -2.3, 15.8, 16.7 (Me); 18.8 (C); 19.3, 19.4, 19.8, 26.8 (Me); 29.4, 31.0, 64.3, 70.2, 83.4 (CH); 87.7 (C); 125.3, 127.48, 127.52, 127.6, 127.9, 128.2 (CH); 138.1, 145.1, 157.5 (C). **FAB-MS**: 528 (13, $[M+\text{H}]^+$), 480 (100, $[M-\text{SMe}]^+$), 436 (80, $[M-\text{SMe}-\text{CO}_2]^+$), 352 (32). **Anal.** calc. for $\text{C}_{30}\text{H}_{45}\text{NO}_3\text{SiS}$ (527.84): C 68.26, H 8.59, N 2.65; found: C 68.31, H 8.50, N 2.67.

(S)-2-Methoxymethoxy-2-phenyl-ethanol (21). Compound **16** (450 mg, 0.915 mmol) was treated with $\text{Hg}(\text{O}_2\text{CCF}_3)_2$ (430 mg, 1.01 mmol) and NaBH_4 (26 mg, 0.686 mmol)/DBU (69 μL , 0.458 mmol) according to *GP 3*. The chiral auxiliary **1** was recovered by filtration (184 mg, 71%). Purification of the crude product by FC (pentane/AcOEt 4:1) yielded **21** (151 mg, 90%). Colorless oil. The enantiomeric purity of **21** was determined by GC on a γ -Dex capillary column (90°; 1°/min; R_t of (*R*)-**21**: 48.4 min, of (*S*)-**21**: 48.8 min) to be $\geq 99:1$. $[\alpha]_{\text{D}}^{\text{r.t.}} = +182.0$ ($c = 2.00$, CHCl_3). **¹H-NMR** (300 MHz, CDCl_3): 2.84 (*dd*, $J = 4.4, 8.7$, 1 H, OH); 3.40 (*s*, 3 H, Me); 3.63-

3.79 (*m*, 2 H, CH_2OH); 4.64 (*d*, $J = 6.7$, 1 H, CH_2OMe); 4.66 (*d*, $J = 6.7$, 1 H, CH_2OMe); 4.71 (*dd*, $J = 3.9, 7.9$, 1 H, PhCH); 7.27-7.38 (*m*, 5 arom. H). The physical data are in agreement with the values reported in the literature [4].

(S)-2-Benzyl-3-methyl-but-3-en-1-ol (22). Compound **17** (616 mg, 1.23 mmol) was treated with $\text{Hg}(\text{O}_2\text{CCF}_3)_2$ (576 mg, 1.35 mmol) and NaBH_4 (35 mg, 0.921 mmol)/DBU (92 μL , 0.614 mmol) according to *GP 3*. The chiral auxiliary **1** was recovered by filtration (287 mg, 83%). Purification of the crude product by FC (pentane/AcOEt 6:1) yielded **22** (194 mg, 82%). Colorless oil. $[\alpha]_{\text{D}}^{\text{r.t.}} = +71.3$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3587*m*, 3076*w*, 3008*s*, 2873*m*, 1648*w*, 1496*w*, 1454*s*, 1394*m*, 1350*w*, 1260*w*, 1102*s*, 1074*s*, 1046*s*, 1011*s*, 912*s*. **¹H-NMR** (400 MHz, CDCl_3): 1.71-1.72 (*m*, 3 H, $\text{C}=\text{CMe}$); 2.31 (*br s*, 1 H, OH); 3.52-3.58 (*m*, 1 H, CH_2OH); 3.60-3.65 (*m*, 1 H, CH_2OH); 3.91 (*dd*, $J = 4.2, 7.8$, 1 H, CHCH_2); 4.21 (*d*, $J = 11.6$, 1 H, PhCH_2); 4.58 (*d*, $J = 11.6$, 1 H, PhCH_2); 5.05-5.06 (*m*, 2 H, $\text{C}=\text{CH}_2$); 7.23-7.36 (*m*, 5 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 18.0 (Me); 64.4, 70.5 (CH_2); 83.7 (CH); 114.8 (CH_2); 127.7, 127.9, 128.4 (CH); 138.1, 141.8 (C). **EI-MS:** 161 (9, $[\text{M}-\text{CH}_2\text{OH}]^+$), 91 (100, Bn^+). **Anal.** calc. for $\text{C}_{12}\text{H}_{16}\text{O}_2$ (192.26): C 74.97, H 8.39; found: C 74.87, H 8.27.

(S)-2-(tert-Butyl-dimethyl-silanyloxy)-3-methyl-butan-1-ol (23). Compound **18** (326 mg, 0.618 mmol) was treated with $\text{Hg}(\text{O}_2\text{CCF}_3)_2$ (290 mg, 0.680 mmol) and NaBH_4 (18 mg, 0.464 mmol)/DBU (46 μL , 0.309 mmol) according to *GP 3*. The chiral auxiliary **1** was recovered by filtration (137 mg, 79%). Purification of the crude product by FC (pentane/AcOEt 13:1) yielded **23** (112 mg, 83%). Colorless oil. The enantiomeric purity of **23** was determined by GC on a γ -Dex capillary column (100° isotherm; R_t of (*S*)-**23**: 17.1 min, of (*R*)-**23**: 17.6 min) to be \geq 99:1. $[\alpha]_{\text{D}}^{\text{r.t.}} = +0.5$ ($c = 1$, CHCl_3). **¹H-NMR** (300 MHz, CDCl_3): 0.05 (*s*, 6 H, Me_2Si); 0.85-0.89

(*m*, 15 H, Me, *t*Bu); 1.74-1.87 (*m*, 2 H, Me₂CH, OH); 3.42-3.52 (*m*, 2 H, CH₂OH, CHCH₂). The physical data are in agreement with the values reported in the literature [5].

N-((S)-2-Hydroxy-1-phenyl-ethyl)-2,4,6-trimethyl-benzenesulfonamide (24). Compound **14c** (292 mg, 0.464 mmol) was treated with Hg(O₂CCF₃)₂ (218 mg, 0.511 mmol) and NaBH₄ (13 mg, 0.348 mmol)/DBU (35 µL, 0.232 mmol) according to *GP 3*. The chiral auxiliary **1** was recovered by filtration (92 mg, 70%). Purification of the crude product by FC (CH₂Cl₂, 0.5% MeOH) yielded **24** (101 mg, 68%). White solid. $[\alpha]_D^{r.t.} = +68.4$ (*c* = 1, CHCl₃). **¹H-NMR** (300 MHz, CDCl₃): 2.04 (*t*, *J* = 6.1, 1 H, OH); 2.26 (*s*, 3 H, Me); 2.51 (*s*, 6 H, Me); 3.71-3.76 (*m*, 2 H, CH₂OH); 4.31 (*dd*, *J* = 5.8, 11.5, 1 H, PhCH); 5.36 (*d*, *J* = 5.8, 1 H, NH); 6.84 (*s*, 2 arom. H); 7.03-7.09 (*m*, 2 arom. H); 7.15-7.23 (*m*, 3 arom. H). The physical data are in agreement with the values reported in the literature [6].

(S)-2-Phenyl-propane-1,2-diol (25). Compound **11a** (370 mg, 0.802 mmol) was treated with Hg(O₂CCF₃)₂ (376 mg, 0.882 mmol) and NaBH₄ (23 mg, 0.601 mmol)/DBU (60 µL, 0.401 mmol) according to *GP 3*. The chiral auxiliary **1** was recovered by filtration (192 mg, 85%). Purification of the crude product by FC (pentane/AcOEt 2:1) yielded **25** (101 mg, 82%). Colorless oil. The enantiomeric purity of **25** was determined by GC on a β -Dex capillary column (110°; 1°/min; *R*_t of (*S*)-**25**: 31.8 min, of (*R*)-**25**: 32.3 min) to be $\geq 99:1$. $[\alpha]_D^{r.t.} = +9.8$ (*c* = 2, CHCl₃). **¹H-NMR** (300 MHz, CDCl₃): 1.52 (*s*, 3 H, Me); 2.21 (*br s*, 1 H, OH); 2.83 (*br s*, 1 H, OH); 3.60 (*d*, *J* = 11.1, 1 H, CH₂OH); 3.77 (*d*, *J* = 11.1, 1 H, CH₂OH), 7.24-7.46 (*m*, 5 arom. H). The physical data are in agreement with the values reported in the literature [7].

(2S)-4-Methyl-2-phenyl-pentane-1,2-diol (26). Compound **11d** (935 mg, 1.86 mmol) was treated

with $\text{Hg}(\text{O}_2\text{CCF}_3)_2$ (871 mg, 2.04 mmol) and NaBH_4 (53 mg, 1.39 mmol)/DBU (141 μL , 0.928 mmol) according to *GP 3*. The chiral auxiliary **1** was recovered by filtration (418 mg, 80%). Purification of the crude product by FC (pentane/Et₂O 6:1) yielded **26** (275 mg, 76%). White solid. **M.p.** 88-90°. $[\alpha]_D^{r.t.} = -3.6$ ($c = 1$, CHCl₃). **IR** (CHCl₃): 3573m, 3067w, 3008m, 2958s, 2870m, 1601w, 1495w, 1467m, 1446m, 1367m, 1152w, 1056s, 944w, 908w, 864w, 657m. **¹H-NMR** (400 MHz, CDCl₃): 0.68 (*d*, $J = 6.6$, 3 H, Me); 0.90 (*d*, $J = 6.6$, 3 H, Me); 1.53-1.63 (*m*, 1 H, Me₂CH); 1.65-1.72 (*m*, 2 H); 1.72-1.80 (*m*, 1 H); 2.70 (*s*, 1 H, OH); 3.62 (*dd*, $J = 8.2, 11.0$, 1 H, CH₂OH); 3.76 (*dd*, $J = 4.2, 11.0$, 1 H, CH₂OH); 7.24-7.27 (*m*, 1 arom. H); 7.34-7.42 (*m*, 4 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 23.9, 24.1 (Me); 24.4 (CH); 46.8, 71.4 (CH₂); 77.6 (C); 125.6, 126.9, 128.3 (CH); 143.8 (C). **EI-MS**: 162 (14), 147 (15), 120 (33), 105 (100). **Anal.** calc. for C₁₂H₁₈O₂ (194.27): C 74.19, H 9.34; found: C 74.25, H 9.18.

(R)-1-Hydroxymethyl-4-methoxy-indan-1-ol (27). Compound **11e** (452 mg, 0.897 mmol) was treated with $\text{Hg}(\text{O}_2\text{CCF}_3)_2$ (421 mg, 0.987 mmol) and NaBH_4 (25 mg, 0.673 mmol)/DBU (67 μL , 0.449 mmol) according to *GP 3*. The chiral auxiliary **1** was recovered by filtration (223 mg, 88%). Purification of the crude product by FC (pentane/Et₂O 4:1) yielded **27** (106 mg, 61%). White solid. **M.p.** 95-96°. $[\alpha]_D^{r.t.} = +10.8$ ($c = 1$, CHCl₃). **IR** (CHCl₃): 3595w, 3465w, 3008m, 2939m, 1593m, 1482s, 1440w, 1333w, 1263s, 1076m, 1042m, 1014m, 883w. **¹H-NMR** (400 MHz, CDCl₃): 2.00-2.08 (*m*, 1 H, CH₂); 2.25 (*br t*, 1 H, OH); 2.43 (*ddd*, $J = 3.6, 8.3, 12.0$, 1 H, CH₂); 2.53 (*s*, 1 H, OH); 2.68-2.77 (*m*, 1 H, CH₂); 2.98 (*ddd*, $J = 3.6, 9.1, 12.7$, 1 H, CH₂); 3.61 (*dd*, $J = 6.3, 11.1$, 1 H, CH₂OH); 3.71 (*dd*, $J = 4.3, 11.1$, 1 H, CH₂OH); 3.83 (*s*, 3 H; OMe); 6.77-6.79 (*m*, 1 arom. H); 6.98-7.00 (*m*, 1 arom. H); 7.21-7.25 (*m*, 1 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 25.9, 37.0 (CH₂); 55.3 (Me); 68.2 (CH₂); 84.2 (C); 110.1, 115.5, 128.5 (CH); 131.1, 146.5, 156.1 (C). **EI-MS**: 194 (1, [M]⁺), 176 (24, [M-H₂O]⁺), 163 (100, [M-CH₂OH]⁺), 147 (58). **Anal.** calc.

for $C_{11}H_{14}O_3$ (194.23): C 68.02, H 7.26; found: C 68.03, H 7.08.

(2R,3S)-3-(tert-Butyl-dimethyl-silyloxy)-4-methyl-pentan-2-ol (28). Compound **18** (615 mg, 1.17 mmol) was treated with $Hg(O_2CCF_3)_2$ (547 mg, 1.28 mmol) and $MeMgCl$ (4.66 mL, 4.66 mmol) according to *GP 4*. The chiral auxiliary **1** was recovered by filtration (300 mg, 91%). Purification of the crude product by FC (pentane/Et₂O 15:1) yielded **28** (207 mg, 76%) as a 83:17 mixture with its C(2)-OH epimer. For analytical purposes a sample was purified by FC (pentane/Et₂O 15:1) to afford **28** as a single diastereoisomer. Colorless oil. The enantiomeric purity of **28** and its C(2)-OH epimer were both determined by GC on a β -Dex capillary column (80°; 1°/min; R_t of (2S,3S)-**28**: 18.8 min, of (2R,3R)-**28**: 19.4 min, of (2R,3S)-**28**: 22.6 min, of (2S,3R)-**28**: 25.0 min) to be $\geq 99:1$. $[\alpha]_D^{r.t.} = -11.6$ ($c = 1$, $CHCl_3$). **IR** ($CHCl_3$): 3599w, 2958s, 2930s, 2857m, 1472m, 1388w, 1362w, 1113m, 1049s, 1019m, 858s, 838s. **¹H-NMR** (400 MHz, $CDCl_3$): 0.09 (*s*, 3 H, Me_2Si); 0.10 (*s*, 3 H, Me_2Si); 0.89 (*d*, $J = 6.9$, 3 H, Me); 0.93 (*s*, 9 H, *tBu*); 0.94 (*d*, $J = 6.9$, 3 H, Me); 1.15 (*d*, $J = 6.4$, 3 H, $C(OH)Me$); 1.74-1.83 (*m*, 1 H, Me_2CH); 1.86 (*d*, $J = 5.1$, 1 H, OH); 3.38 (*dd*, $J = 3.7, 5.0$, 1 H, $CHOSi$); 3.79-3.87 (*m*, 1 H, $CHOH$). **¹³C-NMR** (100 MHz, $CDCl_3$): -4.3, -3.9, 17.7, 18.3 (Me); 18.4 (C); 20.4, 26.1 (Me); 30.1, 69.8, 80.5 (CH). **EI-MS**: 187 (44, $[M-MeCHOH]^+$), 159 (100), 115 (44). **Anal.** calc. for $C_{12}H_{28}O_2Si$ (232.44): C 62.01, H 12.14; found: C 62.11, H 11.95.

(1R,2S)-2-(tert-Butyl-dimethyl-silyloxy)-3-methyl-1-phenyl-butan-1-ol (29) and **(1S,2S)-2-(tert-Butyl-dimethyl-silyloxy)-3-methyl-1-phenyl-butan-1-ol (29 minor)**. Compound **18** (555 mg, 1.05 mmol) was treated with $Hg(O_2CCF_3)_2$ (493 mg, 1.16 mmol) and $PhLi$ (2.63 mL, 4.20 mmol) according to *GP 4*. The chiral auxiliary **1** was recovered by filtration (258 mg, 87%). Purification of the crude product by FC (pentane/Et₂O 30:1 to 25:1) yielded **29** (194 mg, 63%) and **29** minor

(50 mg, 16%) as single diastereoisomers. **29**: Colorless oil. The enantiomeric purity of **29** was determined by GC on a β -Dex capillary column (100°; 1°/min; R_t of (1*R*,2*S*)-**29**: 59.3 min, of (1*S*,2*R*)-**29**: 60.4 min) to be \geq 99:1. $[\alpha]_D^{r.t.} = -21.6$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3606w, 2958s, 2930s, 2857m, 1602w, 1472m, 1388w, 1362w, 1254m, 1126w, 1043s, 908s, 836s. **¹H-NMR** (400 MHz, CDCl_3): -0.11 (*s*, 3 H, Me_2Si); 0.08 (*s*, 3 H, Me_2Si); 0.80 (*d*, $J = 6.8$, 3 H, Me); 0.91 (*s*, 9 H, *tBu*); 0.94 (*d*, $J = 6.8$, 3 H, Me); 1.66-1.74 (*m*, 1 H, Me_2CH); 2.43 (*br s*, 1 H, OH); 3.72 (*dd*, $J = 3.1, 5.2$, 1 H, CHOSi); 4.75 (*d*, $J = 5.2$, 1 H, CHOH); 7.23-7.39 (*m*, 5 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): -4.6, -4.4, 17.0 (Me); 18.3 (C); 21.1, 26.0 (Me); 29.3, 76.7, 80.1, 126.7, 127.4, 128.2 (CH); 141.4 (C). **EI-MS**: 277 (14, $[M+\text{H}-\text{H}_2\text{O}]^+$), 237 (20), 187 (100, $[M-\text{PhCHOH}]^+$). **Anal.** calc. for $\text{C}_{17}\text{H}_{30}\text{O}_2\text{Si}$ (294.51): C 69.33, H 10.27; found: C 69.22, H 10.34.

29 minor: Colorless oil. The enantiomeric purity of **29** minor was determined by GC on a β -Dex capillary column (100°; 1°/min; R_t of (1*R*,2*R*)-**29**: 57.1 min, of (1*S*,2*S*)-**29**: 57.9 min) to be \geq 99:1. $[\alpha]_D^{r.t.} = +49.6$ ($c = 1$, CHCl_3). **¹H-NMR** (300 MHz, CDCl_3): -0.27 (*s*, 3 H, Me_2Si); 0.00 (*s*, 3 H, Me_2Si); 0.90 (*s*, 9 H, *tBu*); 0.95 (*d*, $J = 6.9$, 3 H, Me); 1.00 (*d*, $J = 6.9$, 3 H, Me); 1.74-1.83 (*m*, 1 H, Me_2CH); 2.96 (*d*, $J = 6.2$, 1 H, OH); 3.63 (*t*, $J = 4.0$, 1 H, CHOSi); 4.67 (*dd*, $J = 4.0, 6.2$, 1 H, CHOH); 7.24-7.37 (*m*, 5 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): -4.9, -4.3, 17.7 (Me); 18.3 (C); 19.1, 26.0 (Me); 31.8, 73.0, 81.6, 126.2, 127.1, 128.1 (CH); 143.3 (C).

(S)-4-Isopropyl-3-((S)-methoxymethoxy-phenyl-acetyl)-5,5-diphenyl-oxazolidin-2-one (30). Compound **16** (557 mg, 1.13 mmol) was treated with $\text{Hg}(\text{O}_2\text{CCF}_3)_2$ (532 mg, 1.25 mmol) and PCC (512 mg, 2.37 mmol) according to *GP 5*. Purification of the crude product by FC (pentane/AcOEt 7:1) yielded **30** (382 mg, 73%). White solid. **M.p.** 130-134°. $[\alpha]_D^{r.t.} = -52.5$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3008w, 2968w, 1782s, 1710s, 1494w, 1450w, 1371m, 1177m, 1151m, 1043m, 1014w. **¹H-NMR** (300 MHz, CDCl_3): 0.83 (*d*, $J = 6.9$, 3 H, Me); 0.95 (*d*, $J = 6.8$,

3 H, Me); 1.95-2.06 (*m*, 1 H, Me₂CH); 3.38 (*s*, 3 H, OMe); 4.72 (*d*, *J* = 6.9, 1 H, CH₂); 4.75 (*d*, *J* = 6.9, 1 H, CH₂); 5.25 (*d*, *J* = 3.7, 1 H, NCH); 6.33 (*s*, 1 H, C(O)CH); 6.98-7.37 (*m*, 15 arom. H). **¹³C-NMR** (75 MHz, CDCl₃): 16.5, 21.6 (Me); 29.6 (CH); 56.0 (Me); 65.7, 76.1 (CH); 89.8 (C); 95.9 (CH₂); 125.0, 125.7, 127.8, 127.9, 128.2, 128.3, 128.4, 128.6 (CH); 134.8, 137.7, 141.9, 152.6, 170.5 (C). **FAB-MS**: 460 (13, [M+H]⁺), 444 (37), 398 (100, [M-OCH₂OCH₃]⁺), 356 (33). **Anal.** calc. for C₂₈H₂₉NO₅ (459.54): C 73.18, H 6.36, N 3.05; found: C 73.14, H 6.36, N 3.11.

(S)-3-((S)-2-Benzyloxy-3-methyl-but-3-enoyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (31). Compound **17** (512 mg, 1.02 mmol) was treated with Hg(O₂CCF₃)₂ (479 mg, 1.12 mmol) and PCC (462 mg, 2.14 mmol) according to *GP 5*. Purification of the crude product by FC (pentane/AcOEt 13:1) yielded **31** (362 mg, 76%) with 13 mol% of a inseparable compound (later identified as compound (S)-3-formyl-4-isopropyl-5,5-diphenyl-oxazolidin-2-one). This mixture was used for further transformations. For analytical purposes a sample was recrystallized three times (CH₂Cl₂/hexane) to afford pure **31**. White solid. **M.p.** 107-108°. $[\alpha]_D^{25} = -83.7$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3063w, 3008w, 2970w, 1783s, 1710s, 1495w, 1450m, 1366m, 1178m, 1094m, 989w. **¹H-NMR** (400 MHz, CDCl₃): 0.78 (*d*, *J* = 6.8, 3 H, Me); 0.91 (*d*, *J* = 7.0, 3 H, Me); 1.47 (*dd*, *J* = 0.9, 1.3, 3 H, C=CMe); 1.98-2.07 (*m*, 1 H, Me₂CH); 4.45-4.46 (*m*, 1 H, C=CH₂); 4.49 (*d*, *J* = 11.5, 1 H, PhCH₂); 4.54-4.55 (*m*, 1 H, C=CH₂); 4.56 (*d*, *J* = 11.5, 1 H, PhCH₂); 5.31 (*d*, *J* = 3.6, 1 H, NCH); 5.50 (*d*, *J* = 0.4, 1 H, C(O)CH); 7.24-7.38 (*m*, 11 arom. H); 7.40-7.42 (*m*, 2 arom. H); 7.46-7.49 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 16.5, 18.7, 21.8 (Me); 29.7, 65.9 (CH); 71.6 (CH₂); 80.3 (CH); 89.8 (C); 116.3 (CH₂); 125.3, 125.7, 127.8, 128.0, 128.1, 128.4, 128.46, 128.52, 128.8 (CH); 137.6, 137.8, 139.7, 142.6, 152.8, 170.1 (C). **FAB-MS**: 470 (100, [M+H]⁺), 426 (14, [M+H-CO₂]⁺), 362 (52, [M-OBn]⁺). **Anal.** calc. for

$C_{30}H_{31}NO_4$ (469.58): C 76.73, H 6.65, N 2.98; found: C 76.67, H 6.65, N 3.01.

(S)-Methoxymethoxy-phenyl-acetic acid methyl ester (32). Compound **30** (358 mg, 0.779 mmol) was treated with DBU (233 μ L, 1.56 mmol) and LiBr (338 mg, 3.90 mmol) according to *GP 6*. The chiral auxiliary **1** was recovered by filtration (186 mg, 85%). Purification of the crude product by FC (pentane/AcOEt 7:1) yielded **32** (135 mg, 83%). Colorless oil. The enantiomeric purity of **32** was determined by HPLC on a *OD* column (hexane/iPrOH 500:1; flow 0.8 mL/min; detection at 220 nm; R_t of (*S*)-**32**: 25.8 min, of (*R*)-**32**: 33.8 min) to be $\geq 99:1$. **¹H-NMR** (300 MHz, $CDCl_3$): 3.37 (*s*, 3 H, Me); 3.69 (*s*, 3 H, Me); 4.67 (*d*, $J = 6.9$, 1 H, CH_2); 4.74 (*d*, $J = 6.9$, 1 H, CH_2); 5.17 (*s*, 1 H, $C(O)CH$); 7.32-7.38 (*m*, 3 arom. H); 7.42-7.46 (*m*, 2 arom. H). The physical data are in agreement with the values reported in the literature [8].

(S)-2-Benzyl-3-methyl-but-3-enoic acid methyl ester (33). Compound **31** (362 mg, 0.770 mmol, 13 mol% of (*S*)-3-formyl-4-isopropyl-5,5-diphenyl-oxazolidin-2-one) was treated with DBU (230 μ L, 1.54 mmol) and LiBr (334 mg, 3.85 mmol) according to *GP 6*. The chiral auxiliary **1** was recovered by filtration (203 mg, 71% overall yield from **17**). Purification of the crude product by FC (pentane/AcOEt 16:1) yielded **33** (141 mg, 63% overall yield from **17**). Colorless oil. $[\alpha]_D^{25} = +55.0$ ($c = 1$, $CHCl_3$). **IR** ($CHCl_3$): 3008w, 2953w, 1746s, 1650w, 1496w, 1454m, 1437m, 1177m, 1096s, 1028m, 913m. **¹H-NMR** (300 MHz, $CDCl_3$): 1.78-1.79 (*m*, 3 H, $C=CMe$); 3.75 (*s*, 3 H, OMe); 4.38 (*s*, 1 H, $C(O)CH$); 4.52 (*d*, $J = 12.0$, 1 H, $PhCH_2$); 4.58 (*d*, $J = 12.0$, 1 H, $PhCH_2$); 5.11-5.14 (*m*, 2 H, $C=CH_2$); 7.26-7.37 (*m*, 5 arom. H). **¹³C-NMR** (75 MHz, $CDCl_3$): 17.9, 52.1 (Me); 70.6 (CH_2); 81.4 (CH); 116.4 (CH_2); 127.8, 127.9, 128.3 (CH); 137.1, 139.9, 170.8 (C). **EI-MS:** 181 (4), 161 (32, $[M-CO_2Me]^+$), 114 (33, $[M+H-OBn]^+$), 91 (100, Bn^+). **Anal.** calc. for $C_{13}H_{16}O_3$ (220.27): C 70.89, H 7.32; found: C 70.84, H 7.46.

(E)-(R)-4-Hydroxy-4-phenyl-pent-2-enoic acid methyl ester (**34**) and (R)-5-Methyl-5-phenyl-5H-furan-2-one (**35**). Compound **11a** (750 mg, 1.63 mmol) was treated with $\text{Hg}(\text{O}_2\text{CCF}_3)_2$ (762 mg, 1.79 mmol) and DBU (122 μL , 0.812 mmol)/Ylide (1.09 g, 3.25 mmol) according to *GP 7*. The chiral auxiliary **1** was recovered (365 mg, 80%). Purification of the crude product by FC (CH_2Cl_2 /pentane 3:1) yielded **34** (208 mg, 62%) and **35** (75 mg, 27%) as single stereoisomers.

34: Colorless oil. $[\alpha]_{\text{D}}^{\text{r.t.}} = +20.3$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3595w, 3009w, 2953w, 1718s, 1656w, 1436m, 1312m, 1281m, 1174m, 984w. **¹H-NMR** (300 MHz, CDCl_3): 1.71 (*s*, 3 H, Me); 2.23 (*s*, 1 H, OH); 3.73 (*s*, 1 H, OMe); 6.12 (*d*, $J = 15.8$, 1 H, C=CH); 7.17 (*d*, $J = 15.8$, 1 H, C=CH); 7.24-7.38 (*m*, 3 arom. H); 7.42-7.48 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, CDCl_3): 28.9, 51.7 (Me); 74.2 (C); 118.0, 125.1, 127.6, 128.5 (CH); 144.6 (C); 153.4 (CH); 167.2 (C). **EI-MS:** 205 (1, $[M-\text{H}]^+$), 188 (21, $[M-\text{H}_2\text{O}]^+$), 163 (73), 131 (100). **Anal.** calc. for $\text{C}_{12}\text{H}_{14}\text{O}_3$ (206.24): C 69.89, H 6.84; found: C 69.62, H 6.91.

35: Colorless oil. $[\alpha]_{\text{D}}^{\text{r.t.}} = +275.6$ ($c = 1$, CHCl_3). **¹H-NMR** (300 MHz, CDCl_3): 1.82 (*s*, 3 H, Me); 6.04 (*d*, $J = 5.6$, 1 H, C=CH); 7.28-7.40 (*m*, 5 arom. H); 7.64 (*d*, $J = 5.6$, 1 H, C=CH). **¹³C-NMR** (75 MHz, CDCl_3): 26.2 (Me); 88.8 (C); 119.2, 124.7, 128.3, 128.8 (CH); 139.2 (C); 160.4 (CH); 172.3 (C).

(S)-3-((2S,3R)-3,5-Diphenyl-2,3-dihydro-furan-2-yl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (**36**). To a solution of ketone **13** (400 mg, 0.728 mmol) in THF (5 mL) was added $\text{Hg}(\text{O}_2\text{CCF}_3)_2$ (341 mg, 0.801 mmol) at r.t. After stirring for 20 min, H_2O was added and the reaction mixture was diluted with Et_2O . The org. layer was separated and the aq. layer was extracted with Et_2O (2x). The combined org. layers were dried (MgSO_4) and concentrated under reduced pressure. Purification of the crude product by FC (pentane/ Et_2O 4:1, 1% Et_3N) and trituration (boiling

hexane, 10 mL) afforded **36** as a single diastereoisomer. Due to purification problems only small amounts of product could be isolated. White solid. **M.p.** 211-213°. $[\alpha]_D^{r.t.} = +54.0$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3022w, 1754s, 1648w, 1602w, 1490m, 1445m, 1419m, 1374m, 1328w, 1252m, 1043m, 1010m, 1003m, 947m. **¹H-NMR** (400 MHz, CDCl_3): 0.81 (*d*, $J = 6.7$, 3 H, Me); 0.91 (*d*, $J = 7.3$, 3 H, Me); 1.91-2.02 (*m*, 1 H, Me_2CH); 4.32 (*dd*, $J = 2.7$, 7.3, 1 H, PhCH); 4.68 (*d*, $J = 1.5$, 1 H, NCH); 5.47 (*d*, $J = 2.7$, 1 H, CCH); 5.98 (*d*, $J = 7.3$, 1 H, NCHO); 6.76-6.78 (*m*, 2 arom. H); 7.10-7.16 (*m*, 2 arom. H); 7.24-7.27 (*m*, 1 arom. H); 7.30-7.40 (*m*, 10 arom. H); 7.53-7.55 (*m*, 3 arom. H); 7.67-7.69 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 15.6, 20.6 (Me); 29.5, 51.8, 68.6 (CH); 89.0 (C); 94.1, 98.3, 125.2, 125.3, 126.0, 127.2, 127.4, 127.7, 128.2, 128.3, 128.7, 128.86, 128.88 (CH); 129.9, 130.5, 141.3, 144.4, 155.2, 156.5 (C). **MALDI-MS**: 524 (100, $[M+\text{Na}]^+$), 458 (29), 248 (21). **MALDI-HRMS**: m/z 524.2196 [$\text{C}_{34}\text{H}_{31}\text{NO}_3$ ($M+\text{Na}$)⁺ requires 524.2196]

Isopropyl-3-((1S,2S,3R,5R)-5-methoxy-3,5-diphenyl-tetrahydro-furan-2-yl)-5,5-diphenyl-oxazolidin-2-one (**37**). Compound **36** (30 mg, 0.060 mmol) was dissolved in MeOH (3 mL) at r.t. Colorless crystals were formed upon standing for 3 days. The crystals were isolated and identified as compound **37** (single diastereoisomer). White solid. **M.p.** 182-184°. $[\alpha]_D^{r.t.} = -28.4$ ($c = 0.5$, CHCl_3). **IR** (CHCl_3): 3008w, 2963w, 1759s, 1602w, 1494w, 1449w, 1425w, 1381w, 1326w, 1129w, 1047w, 998m, 909w. **¹H-NMR** (400 MHz, CDCl_3): 0.68 (*d*, $J = 6.7$, 3 H, Me); 0.82 (*d*, $J = 7.3$, 3 H, Me); 1.90-1.97 (*m*, 1 H, Me_2CH); 2.56 (*dd*, $J = 6.3$, 13.5, 1 H, CH_2); 2.66 (*dd*, $J = 11.4$, 13.5, 1 H, CH_2); 3.11 (*s*, 3 H, OMe); 4.03-4.08 (*m*, 1 H, CHPh); 4.56 (*d*, $J = 1.6$, 1 H, NCH); 5.52 (*d*, $J = 8.3$, 1 H, CHO); 7.16-7.36 (*m*, 16 arom. H); 7.45-7.48 (*m*, 2 arom. H); 7.53-7.56 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 14.9, 20.7 (Me); 29.7, 45.0 (CH); 47.4 (CH_2); 49.4 (Me); 68.0 (CH); 88.5 (C); 92.4 (CH); 106.5 (C); 125.5, 126.0, 126.2, 126.9, 127.6, 127.9,

128.0, 128.12, 128.14, 128.4, 128.6 (CH); 138.9, 140.0, 140.2, 144.0, 156.6 (C). **MALDI-MS**: 556 (70, $[M+\text{Na}]^+$), 524 (47, $[M+\text{Na}-\text{OMe}]^+$), 458 (100, $[M-\text{OMe}-\text{CO}_2]^+$), 440 (44, $[M-\text{OMe}-\text{CO}_2-\text{H}_2\text{O}]^+$), 248 (67). **MALDI-HRMS**: m/z 556.2438 $[\text{C}_{35}\text{H}_{35}\text{NO}_4 (M+\text{Na})^+$ requires 556.2458].

(S)-4-Isopropyl-3-(1-methylsulfanyl-ethyl)-5,5-diphenyl-oxazolidin-2-one (38). To a solution of compound **3** (210 mg, 0.615 mmol) in THF (3 mL) was added BuLi (0.48 mL) at -78° . After stirring for 10 min, MeI (50 μL , 0.800 mmol) was added dropwise. After stirring for 15 min, the reaction was stopped by quenching with sat. aq. NH_4Cl soln. The reaction mixture was diluted with Et_2O , the org. layer was separated and the aq. layer was extracted with CH_2Cl_2 (2x). The combined org. layers were dried (MgSO_4) and concentrated under reduced pressure. Trituration of the crude product (boiling hexane, 4 mL) yielded **38** (192 mg, 88%) as a 83:17 mixture with its C(1)-SMe epimer. For analytical purposes a sample was recrystallized twice (Et_2O) to afford **38** (dr 95:5). White solid. **M.p.** 166-167 $^\circ$. $[\alpha]_{\text{D}}^{\text{r.t.}} = -138.2$ ($c = 1$, CHCl_3 , dr 83:17). **IR** (CHCl_3): 3008w, 1739s, 1493w, 1450w, 1407w, 1326w, 1178w, 1025w, 1002w. **¹H-NMR** (400 MHz, CDCl_3): 0.71 (*d*, $J = 7.0$, 3 H, Me); 1.03 (*d*, $J = 7.3$, 3 H, Me); 1.32 (*s*, 3 H, SMe); 1.52 (*d*, $J = 7.3$, 3 H, Me); 1.97-2.08 (*m*, 1 H, Me_2CH); 4.74 (*d*, $J = 1.9$, 1 H, NCH); 4.94 (*q*, $J = 7.3$, 1 H, CHSMe); 7.21-7.37 (*m*, 6 arom. H); 7.50-7.53 (*m*, 2 arom. H); 7.69-7.72 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 14.0, 16.6, 19.4, 22.4 (Me); 30.0, 59.0, 67.2 (CH); 89.1 (C); 125.3, 126.5, 127.6, 128.1, 128.2, 128.6 (CH); 138.7, 144.8, 157.0 (C). **MALDI-MS**: 378 (6, $[M+\text{Na}]^+$), 264 (54, $[M-\text{SMe}-\text{CO}_2]^+$), 167 (100). **Anal.** calc. for $\text{C}_{21}\text{H}_{25}\text{NO}_2\text{S}$ (355.50): C 70.95, H 7.09, N 3.94; found: C 70.99, H 7.25, N 3.95.

(S)-4-tert-Butyl-3-methylsulfanyl methyl-5,5-diphenyl-oxazolidin-2-one (39). *(S)-4-tert-Butyl-5,5-diphenyl-oxazolidin-2-one* [9] (1.52 g, 5.15 mmol) was treated with BuLi (3.65 mL, 5.66 mmol) and MTMCl (520 μ L, 6.18 mmol) according to *GP 1*. Purification of the crude product by filtering through a silica plug (CH_2Cl_2) and subsequent trituration (boiling hexane, 10 mL) yielded **39** (1.03 g, 56%). White solid. **M.p.** 196-197°. $[\alpha]_{\text{D}}^{\text{r.t.}} = -134.3$ ($c = 1.03$, CHCl_3). **IR** (CHCl_3): 3007w, 2964w, 1744s, 1486w, 1450w, 1405m, 1370w, 1086w, 993w, 882w. **$^1\text{H-NMR}$** (400 MHz, CDCl_3): 0.86 (s, 9 H, *t*Bu); 1.08 (s, 3 H, SMe); 4.21 (d, $J = 14.7$, 1 H, CH_2); 4.55 (s, 1 H, NCH); 4.94 (d, $J = 14.7$, 1 H, CH_2); 7.18-7.30 (m, 4 arom. H); 7.34-7.39 (m, 2 arom. H); 7.54 (br s, 2 arom. H); 7.74-7.77 (m, 2 arom. H). **$^{13}\text{C-NMR}$** (100 MHz, CDCl_3): 13.0, 28.1 (Me); 37.3 (C); 50.9 (CH_2); 69.1 (CH); 89.6 (C); 125.5, 127.6, 127.7, 128.2, 128.6 (CH); 138.1, 145.1, 157.7 (C). **MALDI-MS**: 378 (8, $[M+\text{Na}]^+$), 264 (2, $[M-\text{SMe}-\text{CO}_2]^+$), 208 (100, $[M-\text{SMe}-\text{CO}_2-\text{isobutene}]^+$). **Anal.** calc. for $\text{C}_{21}\text{H}_{25}\text{NO}_2\text{S}$ (355.50): C 70.95, H 7.09, N 3.94, S: 9.02; found: C 70.82, H 7.15, N 3.93, S: 8.94.

(R)-3-Methylsulfanyl methyl-4,5,5-triphenyl-oxazolidin-2-one (40). *(R)-4-Phenyl-5,5-diphenyl-oxazolidin-2-one* [10] (1.81 g, 5.74 mmol) was treated with BuLi (4.07 mL, 6.31 mmol) and MTMCl (580 μ L, 6.89 mmol) according to *GP 1*. Purification of the crude product by FC (pentane/ Et_2O 4:1) and subsequent trituration (boiling hexane, 10 mL) yielded **40** (1.62 g, 75%). White solid. **M.p.** 129-131°. $[\alpha]_{\text{D}}^{\text{r.t.}} = +39.8$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3008w, 2924w, 1749s, 1494w, 1450w, 1410m, 1264w, 1080w, 1001w, 882w. **$^1\text{H-NMR}$** (400 MHz, CDCl_3): 1.79 (s, 3 H, SMe); 3.60 (d, $J = 14.2$, 1 H, CH_2); 4.91 (d, $J = 14.2$, 1 H, CH_2); 5.79 (s, 1 H, NCH); 6.97-7.07 (m, 7 arom. H); 7.12-7.15 (m, 3 arom. H); 7.32-7.37 (m, 1 arom. H); 7.40-7.45 (m, 2 arom. H); 7.73-7.76 (m, 2 arom. H). **$^{13}\text{C-NMR}$** (100 MHz, CDCl_3): 13.7 (Me); 46.7 (CH_2); 66.6 (CH); 88.4 (C); 126.1, 126.5, 127.3, 127.6, 128.48, 128.51, 128.6, 128.7 (CH); 134.4, 138.9, 142.1, 156.8

(C). **MALDI-MS**: 398 (3, $[M+\text{Na}]^+$), 284 (100, $[M-\text{SMe}-\text{CO}_2]^+$), 206 (22), 167 (32). **Anal.** calc. for $\text{C}_{23}\text{H}_{21}\text{NO}_2\text{S}$ (355.50): C 73.57, H 5.64, N 3.73, S: 8.54; found: C 73.40, H 5.76, N 3.78, S: 8.48.

(4S,5R)-4-Isopropyl-3-methylsulfanyl methyl-5-phenyl-oxazolidin-2-one (41). (4S, 5R)-4-Isopropyl-5-phenyl-oxazolidin-2-one [11] (798 mg, 3.89 mmol) was treated with BuLi (3.17 mL, 4.67 mmol) and MTMCl (424 μL , 5.06 mmol) according to *GP 1*. Purification of the crude product by FC (pentane/AcOEt 8:1) yielded **41** (915 mg, 89%). White solid. **M.p.** 91-93°. $[\alpha]_D^{r.t.} = +27.9$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3008w, 2968w, 2924w, 1748s, 1454w, 1418m, 1267w, 1050w, 997w. **$^1\text{H-NMR}$** (300 MHz, CDCl_3): 0.70 (*d*, $J = 6.9$, 3 H, Me); 0.84 (*d*, $J = 7.2$, 3 H, Me); 1.61-1.78 (*m*, 1 H, Me_2CH); 2.20 (*s*, 3 H, SMe); 4.10 (*d*, $J = 14.2$, 1 H, CH_2); 4.21 (*dd*, $J = 2.6, 8.1$, 1 H, NCH); 5.06 (*d*, $J = 14.2$, 1 H, CH_2); 5.66 (*d*, $J = 8.1$, 1 H, PhCH); 7.31-7.42 (*m*, 5 arom. H). **$^{13}\text{C-NMR}$** (75 MHz, CDCl_3): 14.4, 16.4, 21.0 (Me); 28.2 (CH); 48.5 (CH_2); 61.6, 79.9, 126.1, 128.3, 128.4 (CH); 134.6, 158.2 (C). **FAB-MS**: 531 (50, $[2M+\text{H}]^+$), 483 (21, $[2M-\text{SMe}]^+$), 266 (13, $[M+\text{H}]^+$), 218 (100, $[M-\text{SMe}]^+$), 174 (84, $[M-\text{SMe}-\text{CO}_2]^+$). **Anal.** calc. for $\text{C}_{14}\text{H}_{19}\text{NO}_2\text{S}$ (265.38): C 63.36, H 7.22, N 5.28; found: C 63.41, H 7.36, N 5.25.

(S)-3-(2-Hydroxy-1-methyl-1-methylsulfanyl-2-phenyl-ethyl)-4-isopropyl-5,5-diphenyl-oxazolidin-2-one (42) and 3-[(S)-1-(Hydroxy-diphenyl-methyl)-2-methyl-propyl]-4-methyl-4-methylsulfanyl-5-phenyl-oxazolidin-2-one (43). Compound **38** (368 mg, 1.04 mmol, dr 83:17 mixture) was treated with BuLi (0.82 mL, 1.24 mmol) and benzaldehyde (136 μL , 1.35 mmol) according to *GP 2*. Compounds **42** and **43** were obtained as a 60:40 mixture, determined by $^1\text{H-NMR}$ of the crude product. Purification of the crude product by FC (pentane/Et₂O 6:1 to 3:1) yielded **42** (201 mg, 42%) as a 61:17:14:8 mixture of diastereoisomers and **43** (yield not

determined) as a 55:45 mixture of diastereoisomers. For analytical purposes a sample of **42** was recrystallized (MeOH) to afford **42** as a single diastereoisomer. **42**: White solid. **M.p.** 182-183°.

$[\alpha]_D^{r.t.} = -83.6$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3063w, 3008w, 1721s, 1600w, 1493w, 1451m, 1387m, 1327w, 1178w, 1023m, 1002w, 909w. **¹H-NMR** (300 MHz, CDCl_3): 0.71 (*d*, $J = 7.5$, 3 H, Me); 0.82 (*d*, $J = 7.2$, 3 H, Me); 1.25 (*s*, 3 H, SMe); 1.51 (*s*, 3 H, Me); 1.89-2.03 (*m*, 1 H, Me_2CH); 4.63 (*d*, $J = 2.2$, 1 H, NCH); 4.68 (*d*, $J = 6.5$, 1 H, OH); 5.54 (*d*, $J = 6.5$, 1 H, $\text{CH}(\text{OH})$); 7.18-7.39 (*m*, 9 arom. H); 7.42-7.53 (*m*, 4 arom. H); 7.71-7.76 (*m*, 2 arom. H). **¹³C-NMR** (75 MHz, CDCl_3): 11.0, 17.5, 18.9, 22.1 (Me); 31.7, 68.1 (CH); 72.7 (C); 75.7 (CH); 88.7 (C); 125.5, 126.6, 127.4, 127.6, 127.7, 127.9, 128.2, 128.5, 128.6 (CH); 138.6, 139.2, 144.5, 157.5 (C). **MALDI-MS**: 436 (3), 370 (100, $[M-\text{SMe}-\text{CO}_2]^+$), 352 (19, $[M-\text{H}_2\text{O}-\text{SMe}-\text{CO}_2]^+$), 310 (54). **Anal.** calc. for $\text{C}_{28}\text{H}_{31}\text{NO}_3\text{S}$ (461.62): C 72.85, H 6.77, N 3.03; found: C 72.96, H 6.65, N 3.10.

43 major: White solid. **¹H-NMR** (400 MHz, CDCl_3): 0.91 (*d*, $J = 7.3$, 3 H, Me); 1.07 (*d*, $J = 7.1$, 3 H, Me); 1.19 (*s*, 3 H, SMe); 1.54 (*s*, 3 H, Me); 2.48-258 (*m*, 1 H, Me_2CH); 4.54 (*d*, $J = 1.6$, 1 H, NCH); 5.15 (*s*, 1 H, PhCH); 7.08-7.40 (*m*, 11 arom. H); 7.74-7.76 (*m*, 2 arom. H); 7.79-7.81 (*m*, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl_3): 11.7, 19.7, 24.6, 24.8 (Me); 30.0, 65.9 (CH); 75.1, 82.3 (C); 85.3, 125.9, 126.3, 126.6, 126.7, 127.2, 127.6, 128.1, 128.5, 129.1 (CH); 134.1, 144.9, 146.1, 158.8 (C). **MALDI-TOF-MS**: 484 (100, $[M+\text{Na}]^+$), 400 (25).

(S)-4-*tert*-Butyl-3-((1*S*,2*S*)-2-hydroxy-1-methylsulfanyl-2-phenyl-ethyl)-5,5-diphenyl-oxazolidin-2-one (**44**). Compound **39** (235 mg, 0.661 mmol) was treated with BuLi (0.52 mL, 0.793 mmol) and benzaldehyde (87 μL , 0.859 mmol) according to *GP 2*. Trituration of the crude product (boiling hexane, 2x 5 mL) yielded **44** (279 mg, 91%) as a 90:10 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **44** (dr 91:9). White solid. **M.p.** 239-247°. $[\alpha]_D^{r.t.} = -142.8$ ($c = 1.33$, CHCl_3). **IR** (CHCl_3): 3512w, 3008m,

2964w, 1729s, 1492w, 1450m, 1416m, 1302w, 1138w, 1048m, 1002w, 857w. **¹H-NMR** (400 MHz, CDCl₃): 0.98 (s, 9 H, *t*Bu); 1.15 (s, 3 H, SMe); 4.26 (d, *J* = 5.0, 1 H, OH); 4.39 (s, 1 H, NCH); 4.46 (d, *J* = 9.9, 1 H, CHSMe); 5.52 (dd, *J* = 5.0, 9.9, 1 H, CH(OH)); 7.20-7.38 (m, 11 arom. H); 7.53 (br s, 2 arom. H); 7.75-7.78 (m, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 9.4, 28.2 (Me); 37.6 (C); 69.6, 72.5, 73.6 (CH); 90.1 (C); 125.8, 127.3, 127.7, 127.8, 128.1, 128.26, 128.31, 128.4 (CH); 138.2, 141.1, 144.8, 158.3 (C). **MALDI-MS**: 484 (13, [M+Na]⁺), 370 (6, [M-SMe-CO₂]⁺), 314 (42, [M-SMe-CO₂-isobutene]⁺), 296 (100). **Anal.** calc. for C₂₈H₃₁NO₃S (461.62): C 72.85, H 6.77, N 3.03; found: C 72.92, H 6.95, N 3.16.

(R)-3-((1*R*,2*R*)-2-Hydroxy-1-methylsulfanyl-2-phenyl-ethyl)-4,5,5-triphenyl-oxazolidin-2-one (**45**). Compound **40** (218 mg, 0.580 mmol) was treated with BuLi (0.45 mL, 0.697 mmol) and benzaldehyde (76 μ L, 0.754 mmol) according to *GP 2*. Trituration of the crude product (boiling hexane, 2x 5 mL) yielded **45** (253 mg, 91%) as a 79:21 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **45** (dr 90:10). White solid. **M.p.** 207-213°. $[\alpha]_D^{25} = +12.3$ (*c* = 1, CHCl₃). **IR** (CHCl₃): 3378w, 3064w, 3008w, 1732s, 1601w, 1495w, 1450m, 1403m, 1277w, 1033w, 1003m, 917w, 866w, 826w. **¹H-NMR** (400 MHz, CDCl₃): 1.83 (s, 3 H, SMe); 4.10 (d, *J* = 7.3, 1 H, OH); 4.70 (d, *J* = 7.0, 1 H, CHSMe); 5.25 (dd, *J* = 7.0, 7.3, 1 H, CH(OH)); 5.83 (s, 1 H, NCH); 6.87-6.93 (m, 2 arom. H); 6.97-7.05 (m, 5 arom. H); 7.12-7.27 (m, 7 arom. H); 7.32-7.44 (m, 4 arom. H); 7.65-7.68 (m, 2 arom. H). **¹³C-NMR** (100 MHz, CDCl₃): 13.7 (Me); 66.9, 69.9, 75.1 (CH); 89.0 (C); 125.9, 126.55, 126.61, 127.4, 127.5, 127.9, 128.2, 128.5, 128.69, 128.71 (CH); 133.8, 138.6, 140.5, 142.7, 157.8 (C). **MALDI-MS**: 504 (22, [M+Na]⁺), 390 (88, [M-SMe-CO₂]⁺), 372 (100, [M-H₂O-SMe-CO₂]⁺). **Anal.** calc. for C₃₀H₂₇NO₃S (481.61): C 74.82, H 5.65, N 2.91; found: C 74.78, H 5.53, N 3.01.

(4S,5R)-3-((1S,2S)-2-Hydroxy-1-methylsulfanyl-2-phenyl-ethyl)-4-isopropyl-5-phenyl-oxazolidin-2-one (**46**). Compound **41** (260 mg, 0.980 mmol) was treated with BuLi (0.80 mL, 1.18 mmol) and benzaldehyde (129 μ L, 1.27 mmol) according to *GP 2*. Purification of the crude product by FC (pentane/AcOEt 5:1) yielded **46** (313 mg, 86%) as a 88:12 mixture with its C(2)-OH epimer. For analytical purposes a sample was recrystallized (MeOH) to afford **46** (dr 98.5:1.5). White solid. **M.p.** 160-163°. $[\alpha]_D^{25} = +19.6$ ($c = 1$, CHCl_3). **IR** (CHCl_3): 3365w, 3008w, 2967w, 1735s, 1496w, 1454m, 1413m, 1041w. **$^1\text{H-NMR}$** (400 MHz, CDCl_3): 0.69 (*d*, $J = 7.0$, 3 H, Me); 0.83 (*d*, $J = 7.2$, 3 H, Me); 1.78-1.89 (*m*, 1 H, Me_2CH); 2.12 (*s*, 3 H, SMe); 4.06 (*d*, $J = 5.7$, 1 H, OH); 4.17 (*dd*, $J = 2.7$, 7.7, 1 H, NCH); 4.75 (*d*, $J = 8.2$, 1 H, CHSMe); 5.35 (*dd*, $J = 5.7$, 8.2, 1 H, CH(OH)); 5.53 (*d*, $J = 7.7$, 1 H, PhCH); 7.29-7.41 (*m*, 8 arom. H); 7.48-7.50 (*m*, 2 arom. H). **$^{13}\text{C-NMR}$** (100 MHz, CDCl_3): 14.6, 16.9, 19.7 (Me); 28.8, 64.8, 69.0, 74.7, 81.1 (CH); 126.2, 126.9, 128.3, 128.5, 128.6 (CH); 134.3, 140.7, 159.0 (C). **FAB-MS**: 372 (5, $[M+\text{H}]^+$), 354 (15, $[M+\text{H}-\text{H}_2\text{O}]^+$), 324 (100, $[M-\text{SMe}]^+$), 280 (65, $[M-\text{SMe}-\text{CO}_2]^+$), 264 (47). **Anal.** calc. for $\text{C}_{21}\text{H}_{25}\text{NO}_3\text{S}$ (371.50): C 67.90, H 6.78, N 3.77; found: C 67.96, H 6.68, N 3.85.

4. References

- [1] Suffert, J. *J. Org. Chem.* **1989**, *54*, 509.
- [2] Jennings, W. B.; Lovely, C. J. *Tetrahedron* **1991**, *47*, 5561
- [3] Chemla, F.; Hebbe, V.; Normant, J. F. *Synthesis* **2000**, *75*.
- [4] Ko, K. Y.; Eliel, E. L. *J. Org. Chem.* **1986**, *51*, 5353.
- [5] Nubbemeyer, U.; Öhrlein, R.; Gonda, J.; Ernst, B.; Bellus, D. *Angew. Chem.* **1991**, *103*, 1533.
- [6] Hoppe, I.; Hoffmann, H.; Gärtner, I.; Krettek, T.; Hoppe, D. *Synthesis* **1991**, *1157*.
- [7] Agami, C.; Couty, F.; Lequesne, C. *Tetrahedron* **1995**, *51*, 4043.
- [8] Barrett, A. G. M.; Rys, D. J. *J. Chem. Soc., Perkin Trans. 1* **1995**, *1009*.
- [9] We are grateful to Novartis Pharma AG for donation of 4-*tert*-butyl-5,5-diphenyl-oxazolidin-2-one (preparation in analogy to ref. 10).
- [10] Bull, S. D.; Davies, S. G.; Jones, S.; Sanganee, H. J. *J. Chem. Soc., Perkin Trans. 1* **1999**, *387*.
- [11] Preparation in analogy to: (a) Fujita, M.; Hiyama, T. *J. Org. Chem.* **1988**, *53*, 5415. (b) Kano, S.; Yokomatsu, T.; Iwasawa, H.; Shibuya, S. *Chem. Pharm. Bull.* **1988**, *36*, 3341.