Revised

Synthesis of Functionally Diverse and Conformationally Constrained Polycyclic Analogues of Proline and Prolinol

Stephen Hanessian,* Gianluca Papeo, Mauro Angiolini, Kamal Fettis, Marco Beretta, and (in part) Alexander Munro

Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, P. Q., CANADA, H3C 3J7. Email: stephen.hanessian@umontreal.ca

Received Month XX, 2003

Supporting Information

General experimental section (1 page)

1H NMR and 13NMR of selected compounds (26 pages)
General information
Solvents were distilled under positive pressure of dry argon before use and dried by standard methods: toluene from sodium; THF and ether from sodium/benzophenone ketyl; CH$_2$Cl$_2$ from calcium hydride. All commercially available reagents were used without further purification. All nonaqueous reactions were performed under argon atmosphere with oven-dried glassware. 1H NMR chemical shifts are reported in parts per million (ppm) downfield from tetramethylsilane (TMS) with reference to internal solvent. The chemical shifts for the carbons of the rotamers, when separated, are reported in parentheses. Low- and high-resolution mass spectra were recorded using fast atom bombardment (FAB), (TOF CI $^+$), or electron spray (EI) techniques. Melting points were determined are uncorrected. Optical rotations were recorded in a 1 dm cell at ambient temperature with a sodium lamp (wavelength of 589 nm). Analytical thin-layer chromatography was performed on pre-coated silica gel plates. Visualization was performed by ultraviolet light and/or by staining with ceric ammonium molybdate or potassium permanganate. Chromatographic purifications were performed on a column with 230-400 mesh silica gel with the indicated solvent system.